2022届安徽省合肥市名校中考数学模拟预测试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.已知一次函数且随的增大而增大,那么它的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.下列函数是二次函数的是( )
A. B. C. D.
3.某运动会颁奖台如图所示,它的主视图是( )
A. B. C. D.
4.2017年,小榄镇GDP总量约31600000000元,数据31600000000科学记数法表示为( )
A.0.316×1010 B.0.316×1011 C.3.16×1010 D.3.16×1011
5.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正确的是( )
A.a=b•cosA B.c=a•sinA C.a•cotA=b D.a•tanA=b
6.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b-1)x+c的图象可能是( )
A. B. C. D.
7.数轴上分别有A、B、C三个点,对应的实数分别为a、b、c且满足,|a|>|c|,b•c<0,则原点的位置( )
A.点A的左侧 B.点A点B之间
C.点B点C之间 D.点C的右侧
8.方程的根是( )
A.x=2 B.x=0 C.x1=0,x2=-2 D. x1=0,x2=2
9.如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )
A.M B.N C.P D.Q
10.到三角形三个顶点的距离相等的点是三角形( )的交点.
A.三个内角平分线 B.三边垂直平分线
C.三条中线 D.三条高
二、填空题(共7小题,每小题3分,满分21分)
11.如图,将边长为的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为_______平方单位.
12.如图,在正六边形ABCDEF的上方作正方形AFGH,联结GC,那么的正切值为___.
13.如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是______.
14.如图,一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,与x轴交与点C,若tan∠AOC=,则k的值为_____.
15.计算:=_____.
16.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.
17.如图,AB是半径为2的⊙O的弦,将沿着弦AB折叠,正好经过圆心O,点C是折叠后的上一动点,连接并延长BC交⊙O于点D,点E是CD的中点,连接AC,AD,EO.则下列结论:①∠ACB=120°,②△ACD是等边三角形,③EO的最小值为1,其中正确的是_____.(请将正确答案的序号填在横线上)
三、解答题(共7小题,满分69分)
18.(10分)如图,点D为△ABC边上一点,请用尺规过点D,作△ADE,使点E在AC上,且△ADE与△ABC相似.(保留作图痕迹,不写作法,只作出符合条件的一个即可)
19.(5分)如图,点A的坐标为(﹣4,0),点B的坐标为(0,﹣2),把点A绕点B顺时针旋转90°得到的点C恰好在抛物线y=ax2上,点P是抛物线y=ax2上的一个动点(不与点O重合),把点P向下平移2个单位得到动点Q,则:
(1)直接写出AB所在直线的解析式、点C的坐标、a的值;
(2)连接OP、AQ,当OP+AQ获得最小值时,求这个最小值及此时点P的坐标;
(3)是否存在这样的点P,使得∠QPO=∠OBC,若不存在,请说明理由;若存在,请你直接写出此时P点的坐标.
20.(8分)某地铁站口的垂直截图如图所示,已知∠A=30°,∠ABC=75°,AB=BC=4米,求C点到地面AD的距离(结果保留根号).
21.(10分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(cos80°≈0.17,sin80°≈0.98,≈1.414)
(1)此时小强头部E点与地面DK相距多少?
(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?
22.(10分)将如图所示的牌面数字分别是1,2,3,4 的四张扑克牌背面朝上,洗匀后放在桌面上.
从中随机抽出一张牌,牌面数字是偶数的概率是_____;先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是 4 的倍数的概率.
23.(12分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.
(1)求甲组加工零件的数量y与时间x之间的函数关系式.
(2)求乙组加工零件总量a的值.
24.(14分)某种商品每天的销售利润元,销售单价元,间满足函数关系式:,其图象如图所示.
(1)销售单价为多少元时,该种商品每天的销售利润最大? 最大利润为多少元?
(2)销售单价在什么范围时,该种商品每天的销售利润不低于21 元?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
根据一次函数的性质:k>0,y随x的增大而增大;k<0,y随x的增大而减小,进行解答即可.
【详解】
解:∵一次函数y=kx-3且y随x的增大而增大,
∴它的图象经过一、三、四象限,
∴不经过第二象限,
故选:B.
【点睛】
本题考查了一次函数的性质,掌握一次函数所经过的象限与k、b的值有关是解题的关键.
2、C
【解析】
根据一次函数的定义,二次函数的定义对各选项分析判断利用排除法求解.
【详解】
A. y=x是一次函数,故本选项错误;
B. y=是反比例函数,故本选项错误;
C.y=x-2+x2是二次函数,故本选项正确;
D.y= 右边不是整式,不是二次函数,故本选项错误.
故答案选C.
【点睛】
本题考查的知识点是二次函数的定义,解题的关键是熟练的掌握二次函数的定义.
3、C
【解析】
从正面看到的图形如图所示:
,
故选C.
4、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
31600000000=3.16×1.故选:C.
【点睛】
本题考查科学记数法,解题的关键是掌握科学记数法的表示.
5、C
【解析】
∵∠C=90°,
∴cosA=,sinA= ,tanA=,cotA=,
∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,
∴只有选项C正确,
故选C.
【点睛】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键.
6、A
【解析】
由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b-1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b-1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b-1)x+c的对称轴x=->0,即可进行判断.
【详解】
点P在抛物线上,设点P(x,ax2+bx+c),又因点P在直线y=x上,
∴x=ax2+bx+c,
∴ax2+(b-1)x+c=0;
由图象可知一次函数y=x与二次函数y=ax2+bx+c交于第一象限的P、Q两点,
∴方程ax2+(b-1)x+c=0有两个正实数根.
∴函数y=ax2+(b-1)x+c与x轴有两个交点,
又∵->0,a>0
∴-=-+>0
∴函数y=ax2+(b-1)x+c的对称轴x=->0,
∴A符合条件,
故选A.
7、C
【解析】
分析:
根据题中所给条件结合A、B、C三点的相对位置进行分析判断即可.
详解:
A选项中,若原点在点A的左侧,则,这与已知不符,故不能选A;
B选项中,若原点在A、B之间,则b>0,c>0,这与b·c<0不符,故不能选B;
C选项中,若原点在B、C之间,则且b·c<0,与已知条件一致,故可以选C;
D选项中,若原点在点C右侧,则b<0,c<0,这与b·c<0不符,故不能选D.
故选C.
点睛:理解“数轴上原点右边的点表示的数是正数,原点表示的是0,原点左边的点表示的数是负数,距离原点越远的点所表示的数的绝对值越大”是正确解答本题的关键.
8、C
【解析】
试题解析:x(x+1)=0,
⇒x=0或x+1=0,
解得x1=0,x1=-1.
故选C.
9、A
【解析】
解:∵点P所表示的数为a,点P在数轴的右边,∴-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,∴数-3a所对应的点可能是M,故选A.
点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍.
10、B
【解析】
试题分析:根据线段垂直平分线上的点到两端点的距离相等解答.
解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.
故选B.
点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,熟记性质是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、6﹣2
【解析】
由旋转角∠BAB′=30°,可知∠DAB′=90°﹣30°=60°;设B′C′和CD的交点是O,连接OA,构造全等三角形,用S阴影部分=S正方形﹣S四边形AB′OD,计算面积即可.
【详解】
解:设B′C′和CD的交点是O,连接OA,
∵AD=AB′,AO=AO,∠D=∠B′=90°,
∴Rt△ADO≌Rt△AB′O,
∴∠OAD=∠OAB′=30°,
∴OD=OB′= ,
S四边形AB′OD=2S△AOD=2××=2,
∴S阴影部分=S正方形﹣S四边形AB′OD=6﹣2.
【点睛】
此题的重点是能够计算出四边形的面积.注意发现全等三角形.
12、
【解析】
延长GF与CD交于点D,过点E作交DF于点M,设正方形的边长为,则解直角三角形可得,根据正切的定义即可求得的正切值
【详解】
延长GF与CD交于点D,过点E作交DF于点M,
设正方形的边长为,则
,
故答案为:
【点睛】
考查正多边形的性质,锐角三角函数,构造直角三角形是解题的关键.
13、
【解析】
求出黑色区域面积与正方形总面积之比即可得答案.
【详解】
图中有9个小正方形,其中黑色区域一共有3个小正方形,
所以随意投掷一个飞镖,击中黑色区域的概率是,
故答案为.
【点睛】
本题考查了几何概率,熟练掌握概率的计算公式是解题的关键.注意面积之比几何概率.
14、1
【解析】
【分析】如图,过点A作AD⊥x轴,垂足为D,根据题意设出点A的坐标,然后根据一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,可以求得a的值,进而求得k的值即可.
【详解】如图,过点A作AD⊥x轴,垂足为D,
∵tan∠AOC==,∴设点A的坐标为(1a,a),
∵一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,
∴a=1a﹣2,得a=1,
∴1=,得k=1,
故答案为:1.
【点睛】本题考查了正切,反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
15、-
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
原式=2.
故答案为-.
【点睛】
本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
16、50(1﹣x)2=1.
【解析】
由题意可得,
50(1−x)²=1,
故答案为50(1−x)²=1.
17、①②
【解析】
根据折叠的性质可知,结合垂径定理、三角形的性质、同圆或等圆中圆周角与圆心的性质等可以判断①②是否正确,EO的最小值问题是个难点,这是一个动点问题,只要把握住E在什么轨迹上运动,便可解决问题.
【详解】
如图1,连接OA和OB,作OF⊥AB.
由题知: 沿着弦AB折叠,正好经过圆心O
∴OF=OA= OB
∴∠AOF=∠BOF=60°
∴∠AOB=120°
∴∠ACB=120°(同弧所对圆周角相等)
∠D=∠AOB=60°(同弧所对的圆周角是圆心角的一半)
∴∠ACD=180°-∠ACB=60°
∴△ACD是等边三角形(有两个角是60°的三角形是等边三角形)
故,①②正确
下面研究问题EO的最小值是否是1
如图2,连接AE和EF
∵△ACD是等边三角形,E是CD中点
∴AE⊥BD(三线合一)
又∵OF⊥AB
∴F是AB中点
即,EF是△ABE斜边中线
∴AF=EF=BF
即,E点在以AB为直径的圆上运动.
所以,如图3,当E、O、F在同一直线时,OE长度最小
此时,AE=EF,AE⊥EF
∵⊙O的半径是2,即OA=2,OF=1
∴AF= (勾股定理)
∴OE=EF-OF=AF-OF=-1
所以,③不正确
综上所述:①②正确,③不正确.
故答案是:①②.
【点睛】
考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.
三、解答题(共7小题,满分69分)
18、见解析
【解析】
以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AC的交点即为所求作的点.
【详解】
解:如图,点E即为所求作的点.
【点睛】
本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作DE∥BC并熟练掌握做一个角等于已知角的作法式解题的关键.
19、(1)a=;(2)OP+AQ的最小值为2,此时点P的坐标为(﹣1,);(3)P(﹣4,8)或(4,8),
【解析】
(1)利用待定系数法求出直线AB解析式,根据旋转性质确定出C的坐标,代入二次函数解析式求出a的值即可;
(2)连接BQ,可得PQ与OB平行,而PQ=OB,得到四边形PQBO为平行四边形,当Q在线段AB上时,求出OP+AQ的最小值,并求出此时P的坐标即可;
(3)存在这样的点P,使得∠QPO=∠OBC,如备用图所示,延长PQ交x轴于点H,设此时点P的坐标为(m,m2),根据正切函数定义确定出m的值,即可确定出P的坐标.
【详解】
解:(1)设直线AB解析式为y=kx+b,
把A(﹣4,0),B(0,﹣2)代入得:,
解得:,
∴直线AB的解析式为y=﹣x﹣2,
根据题意得:点C的坐标为(2,2),
把C(2,2)代入二次函数解析式得:a=;
(2)连接BQ,
则易得PQ∥OB,且PQ=OB,
∴四边形PQBO是平行四边形,
∴OP=BQ,
∴OP+AQ=BQ+AQ≥AB=2,(等号成立的条件是点Q在线段AB上),
∵直线AB的解析式为y=﹣x﹣2,
∴可设此时点Q的坐标为(t,﹣t﹣2),
于是,此时点P的坐标为(t,﹣t),
∵点P在抛物线y=x2上,
∴﹣t=t2,
解得:t=0或t=﹣1,
∴当t=0,点P与点O重合,不合题意,应舍去,
∴OP+AQ的最小值为2,此时点P的坐标为(﹣1,);
(3)P(﹣4,8)或(4,8),
如备用图所示,延长PQ交x轴于点H,
设此时点P的坐标为(m,m2),
则tan∠HPO=,
又,易得tan∠OBC=,
当tan∠HPO=tan∠OBC时,可使得∠QPO=∠OBC,
于是,得,
解得:m=±4,
所以P(﹣4,8)或(4,8).
【点睛】
此题属于二次函数综合题,涉及的知识有:二次函数的图象与性质,待定系数法求一次函数解析式,旋转的性质,以及锐角三角函数定义,熟练掌握各自的性质是解本题的关键.
20、C点到地面AD的距离为:(2+2)m.
【解析】
直接构造直角三角形,再利用锐角三角函数关系得出BE,CF的长,进而得出答案.
【详解】
过点B作BE⊥AD于E,作BF∥AD,过C作CF⊥BF于F,
在Rt△ABE中,∵∠A=30°,AB=4m,
∴BE=2m,
由题意可得:BF∥AD,
则∠FBA=∠A=30°,
在Rt△CBF中,
∵∠ABC=75°,
∴∠CBF=45°,
∵BC=4m,
∴CF=sin45°•BC=
∴C点到地面AD的距离为:
【点睛】
考查解直角三角形,熟练掌握锐角三角函数是解题的关键.
21、 (1) 小强的头部点E与地面DK的距离约为144.5 cm.(2) 他应向前9.5 cm.
【解析】
试题分析:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.求出MF、FN的值即可解决问题;
(2)求出OH、PH的值即可判断;
试题解析:解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.
∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66cos45°=≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm.
(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66sin45°≈46.53,∴PH≈46.53,∵GN=100cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他应向前9.5cm.
22、 (1);(2).
【解析】
(1)直接利用概率公式求解即可;(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.
【详解】
(1) 从中随机抽出一张牌,牌面所有可能出现的结果有4种,且它们出现的可能性相等,其中出现偶数的情况有2种,
∴P(牌面是偶数)==;
故答案为:;
(2)根据题意,画树状图:
可知,共有种等可能的结果,其中恰好是的倍数的共有种,
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
23、(1)y=60x;(2)300
【解析】
(1)由题图可知,甲组的y是x的正比例函数.
设甲组加工的零件数量y与时间x的函数关系式为y=kx.
根据题意,得6k=360,
解得k=60.
所以,甲组加工的零件数量y与时间x之间的关系式为y=60x.
(2)当x=2时,y=100.因为更换设备后,乙组工作效率是原来的2倍.
所以,解得a=300.
24、(1)10,1;(2).
【解析】
(1)将点代入中,求出函数解析式,再根据二次函数的性质求出最大值即可;
(2)求出对称轴为直线,可知点关于对称轴的对称点是,再根据图象判断出x的取值范围即可.
【详解】
解:(1)图象过点,
,
解得
.
.
的顶点坐标为.
,
∴当时,最大=1.
答:该商品的销售单价为10元时,每天的销售利润最大,最大利润为1元.
(2)∵函数图象的对称轴为直线,
可知点关于对称轴的对称点是,
又∵函数图象开口向下,
∴当时,.
答:销售单价不少于8元且不超过12元时,该种商品每天的销售利润不低于21元.
【点睛】
本题考查了待定系数法求二次函数解析式以及二次函数的性质,解题的关键是熟悉待定系数法以及二次函数的性质.
2023年安徽省合肥市名校联盟中考数学模拟试卷(二)(含解析): 这是一份2023年安徽省合肥市名校联盟中考数学模拟试卷(二)(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安徽省名校2022年中考数学模拟预测题含解析: 这是一份安徽省名校2022年中考数学模拟预测题含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,计算的结果是等内容,欢迎下载使用。
安徽合肥市瑶海区重点名校2022年中考数学模拟预测试卷含解析: 这是一份安徽合肥市瑶海区重点名校2022年中考数学模拟预测试卷含解析,共17页。