2021-2022学年重庆市第十八中学中考冲刺卷数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.已知圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,要使这两圆没有公共点,那么d的值可以取( )
A.11; B.6; C.3; D.1.
2.在数轴上表示不等式2(1﹣x)<4的解集,正确的是( )
A. B.
C. D.
3.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:
得分(分) | 60 | 70 | 80 | 90 | 100 |
人数(人) | 7 | 12 | 10 | 8 | 3 |
则得分的众数和中位数分别为( )
A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分
4.下列各式中的变形,错误的是(( )
A. B. C. D.
5.估计-1的值在( )
A.0到1之间 B.1到2之间 C.2到3之间 D.3至4之间
6.若点M(﹣3,y1),N(﹣4,y2)都在正比例函数y=﹣k2x(k≠0)的图象上,则y1与y2的大小关系是( )
A.y1<y2 B.y1>y2 C.y1=y2 D.不能确定
7.下列运算正确的是( )
A.﹣(a﹣1)=﹣a﹣1 B.(2a3)2=4a6 C.(a﹣b)2=a2﹣b2 D.a3+a2=2a5
8.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
成绩 | ||||||
人数 | 2 | 3 | 2 | 3 | 4 | 1 |
则这些运动员成绩的中位数、众数分别为
A.、 B.、 C.、 D.、
9.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为( )
A. B.2 C. D.
10.如图由四个相同的小立方体组成的立体图像,它的主视图是( ).
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.关于x的方程(m﹣5)x2﹣3x﹣1=0有两个实数根,则m满足_____.
12.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).
13.如果=k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=_____.
14.将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC= cm.
15.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:
①两人相遇前,甲的速度小于乙的速度;
②出发后1小时,两人行程均为10km;
③出发后1.5小时,甲的行程比乙多3km;
④甲比乙先到达终点.
其中正确的有_____个.
16.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .
三、解答题(共8题,共72分)
17.(8分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)
18.(8分)如图,将连续的奇数1,3,5,7…按如图中的方式排成一个数,用一个十字框框住5个数,这样框出的任意5个数中,四个分支上的数分别用a,b,c,d表示,如图所示.
(1)计算:若十字框的中间数为17,则a+b+c+d=______.
(2)发现:移动十字框,比较a+b+c+d与中间的数.猜想:十字框中a、b、c、d的和是中间的数的______;
(3)验证:设中间的数为x,写出a、b、c、d的和,验证猜想的正确性;
(4)应用:设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由.
19.(8分)关于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有两个实数根.求m的取值范围;若m为正整数,求此方程的根.
20.(8分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)
21.(8分)先化简,再求值:(﹣)÷,其中x的值从不等式组的整数解中选取.
22.(10分)如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度.(结果保留根号)
23.(12分)如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上. 填空:∠ABC= °,BC= ;判断△ABC与△DEF是否相似,并证明你的结论.
24.问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=1.点P是AC上的一个动点,过点P作MN⊥AC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上).设AP的长为x(0≤x≤4),△AMN的面积为y.
建立模型:(1)y与x的函数关系式为:,
解决问题:(1)为进一步研究y随x变化的规律,小明想画出此函数的图象.请你补充列表,并在如图的坐标系中画出此函数的图象:
x | 0 | 1 | 1 | 3 | 4 | ||||
y | 0 |
|
|
| 0 |
(3)观察所画的图象,写出该函数的两条性质: .
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
∵圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,
∴当d>4+7或d<7-4时,这两个圆没有公共点,即d>11或d<3,
∴上述四个数中,只有D选项中的1符合要求.
故选D.
点睛:两圆没有公共点,存在两种情况:(1)两圆外离,此时圆心距>两圆半径的和;(1)两圆内含,此时圆心距<大圆半径-小圆半径.
2、A
【解析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1– x)<4
去括号得:2﹣2x<4
移项得:2x>﹣2,
系数化为1得:x>﹣1,
故选A.
“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
3、C
【解析】
解:根据表格中的数据,可知70出现的次数最多,可知其众数为70分;把数据按从小到大排列,可知其中间的两个的平均数为80分,故中位数为80分.
故选C.
【点睛】
本题考查数据分析.
4、D
【解析】
根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.
【详解】
A、,故A正确;
B、分子、分母同时乘以﹣1,分式的值不发生变化,故B正确;
C、分子、分母同时乘以3,分式的值不发生变化,故C正确;
D、≠,故D错误;
故选:D.
【点睛】
本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.
5、B
【解析】
试题分析:∵2<<3,
∴1<-1<2,
即-1在1到2之间,
故选B.
考点:估算无理数的大小.
6、A
【解析】
根据正比例函数的增减性解答即可.
【详解】
∵正比例函数y=﹣k2x(k≠0),﹣k2<0,
∴该函数的图象中y随x的增大而减小,
∵点M(﹣3,y1),N(﹣4,y2)在正比例函数y=﹣k2x(k≠0)图象上,﹣4<﹣3,
∴y2>y1,
故选:A.
【点睛】
本题考查了正比例函数图象与系数的关系:对于y=kx(k为常数,k≠0),当k>0时, y=kx的图象经过一、三象限,y随x的增大而增大;当k<0时, y=kx的图象经过二、四象限,y随x的增大而减小.
7、B
【解析】
根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解.
【详解】
解:A、因为﹣(a﹣1)=﹣a+1,故本选项错误;
B、(﹣2a3)2=4a6,正确;
C、因为(a﹣b)2=a2﹣2ab+b2,故本选项错误;
D、因为a3与a2不是同类项,而且是加法,不能运算,故本选项错误.
故选B.
【点睛】
本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键.
8、C
【解析】
根据中位数和众数的概念进行求解.
【详解】
解:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65, 1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80
众数为:1.75;
中位数为:1.1.
故选C.
【点睛】
本题考查1.中位数;2.众数,理解概念是解题关键.
9、C
【解析】
根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.
【详解】
如图所示,
单位圆的半径为1,则其内接正六边形ABCDEF中,
△AOB是边长为1的正三角形,
所以正六边形ABCDEF的面积为
S6=6××1×1×sin60°=.
故选C.
【点睛】
本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.
10、D
【解析】
从正面看,共2列,左边是1个正方形,
右边是2个正方形,且下齐.
故选D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、m≥且m≠1.
【解析】
根据一元二次方程的定义和判别式的意义得到m﹣1≠0且 然后求出两个不等式的公共部分即可.
【详解】
解:根据题意得m﹣1≠0且
解得且m≠1.
故答案为: 且m≠1.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
12、
【解析】
设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可.
解:如图所示,
在RtABC中,tan∠ACB=,∴BC=,
同理:BD=,
∵两次测量的影长相差8米,∴=8,
∴x=4,
故答案为4.
“点睛”本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案.
13、3
【解析】
∵=k,∴a=bk,c=dk,e=fk,∴a+c+e=bk+dk+fk=k(a+b+c),
∵a+c+e=3(b+d+f),∴k=3,
故答案为:3.
14、1.
【解析】
试题分析:如图,∵矩形的对边平行,∴∠1=∠ACB,∵∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=1cm,
∴AC=1cm.
考点:1轴对称;2矩形的性质;3等腰三角形.
15、1
【解析】
试题解析:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;
由图可得,两人在1小时时相遇,行程均为10km,故②正确;
甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;
甲到达终点所用的时间较少,因此甲比乙先到达终点,故④正确.
16、5
【解析】
∵多边形的每个外角都等于72°,
∵多边形的外角和为360°,
∴360°÷72°=5,
∴这个多边形的边数为5.
故答案为5.
三、解答题(共8题,共72分)
17、观景亭D到南滨河路AC的距离约为248米.
【解析】
过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.
【详解】
过点D作DE⊥AC,垂足为E,设BE=x,
在Rt△DEB中,tan∠DBE=,
∵∠DBC=65°,
∴DE=xtan65°.
又∵∠DAC=45°,
∴AE=DE.
∴132+x=xtan65°,
∴解得x≈115.8,
∴DE≈248(米).
∴观景亭D到南滨河路AC的距离约为248米.
18、(1)68 ;(2)4倍;(3)4x,猜想正确,见解析;(4)M的值不能等于1,见解析.
【解析】
(1)直接相加即得到答案;
(2)根据(1)猜想a+b+c+d=4x;
(3)用x表示a、b、c、d,相加后即等于4x;
(4)得到方程5x=1,求出的x不符合数表里数的特征,故不能等于1.
【详解】
(1)5+15+19+29=68,
故答案为68;
(2)根据(1)猜想a+b+c+d=4x,
答案为:4倍;
(3)a=x-12,b=x-2,c=x+2,d=x+12,
∴a+b+c+d=x-12+x-2+x+2+x+12=4x,
∴猜想正确;
(4)M=a+b+c+d+x=4x+x=5x,
若M=5x=1,解得:x=404,
但整个数表所有的数都为奇数,故不成立,
∴M的值不能等于1.
【点睛】
本题考查了一元一次方程的应用.当解得方程的解后,要观察是否满足题目和实际要求再进行取舍.
19、(1)且;(2),.
【解析】
(1)根据一元二次方程的定义和判别式的意义得到m≠0且≥0,然后求出两个不等式的公共部分即可;
(2)利用m的范围可确定m=1,则原方程化为x2+x=0,然后利用因式分解法解方程.
【详解】
(1)∵
.
解得且.
(2)∵为正整数,
∴.
∴原方程为.
解得,.
【点睛】
考查一元二次方程根的判别式,
当时,方程有两个不相等的实数根.
当时,方程有两个相等的实数根.
当时,方程没有实数根.
20、操作平台C离地面的高度为7.6m.
【解析】
分析:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,∠HAF=90°,再计算出∠CAF=28°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF即可.
详解:作CE⊥BD于F,AF⊥CE于F,如图2,
易得四边形AHEF为矩形,
∴EF=AH=3.4m,∠HAF=90°,
∴∠CAF=∠CAH-∠HAF=118°-90°=28°,
在Rt△ACF中,∵sin∠CAF=,
∴CF=9sin28°=9×0.47=4.23,
∴CE=CF+EF=4.23+3.4≈7.6(m),
答:操作平台C离地面的高度为7.6m.
点睛:本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算.
21、-
【解析】
先化简,再解不等式组确定x的值,最后代入求值即可.
【详解】
(﹣)÷,
=÷
=
解不等式组,
可得:﹣2<x≤2,
∴x=﹣1,0,1,2,
∵x=﹣1,0,1时,分式无意义,
∴x=2,
∴原式==﹣.
22、DE的长度为6+1.
【解析】
根据相似三角形的判定与性质解答即可.
【详解】
解:过E作EF⊥BC,
∵∠CDE=120°,
∴∠EDF=60°,
设EF为x,DF=x,
∵∠B=∠EFC=90°,
∵∠ACB=∠ECD,
∴△ABC∽△EFC,
∴,
即,
解得:x=9+2,
∴DE==6+1,
答:DE的长度为6+1.
【点睛】
本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.
23、 (1) (2)△ABC∽△DEF.
【解析】
(1)根据已知条件,结合网格可以求出∠ABC的度数,根据,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC的长;
(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC与△DEF相似.
【详解】
(1)
故答案为
(2)△ABC∽△DEF.
证明:∵在4×4的正方形方格中,
∴∠ABC=∠DEF.
∵
∴
∴△ABC∽△DEF.
【点睛】
考查勾股定理以及相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.
24、 (1) ①y=;②;(1)见解析;(3)见解析
【解析】
(1)根据线段相似的关系得出函数关系式(1)代入①中函数表达式即可填表(3)画图像,分析即可.
【详解】
(1)设AP=x
①当0≤x≤1时
∵MN∥BD
∴△APM∽△AOD
∴
∴MP=
∵AC垂直平分MN
∴PN=PM=x
∴MN=x
∴y=AP•MN=
②当1<x≤4时,P在线段OC上,
∴CP=4﹣x
∴△CPM∽△COD
∴
∴PM=
∴MN=1PM=4﹣x
∴y==﹣
∴y=
(1)由(1)
当x=1时,y=
当x=1时,y=1
当x=3时,y=
(3)根据(1)画出函数图象示意图可知
1、当0≤x≤1时,y随x的增大而增大
1、当1<x≤4时,y随x的增大而减小
【点睛】
本题考查函数,解题的关键是数形结合思想.
重庆市永川区第五中学2021-2022学年中考冲刺卷数学试题含解析: 这是一份重庆市永川区第五中学2021-2022学年中考冲刺卷数学试题含解析,共22页。试卷主要包含了下列运算结果正确的是,下列运算正确的是等内容,欢迎下载使用。
郑州二中学2021-2022学年中考冲刺卷数学试题含解析: 这是一份郑州二中学2021-2022学年中考冲刺卷数学试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下面几何的主视图是,下面运算结果为的是,如图,,则的度数为等内容,欢迎下载使用。
北京密云冯家峪中学2021-2022学年中考冲刺卷数学试题含解析: 这是一份北京密云冯家峪中学2021-2022学年中考冲刺卷数学试题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,计算等内容,欢迎下载使用。