2021-2022学年上海市宝山区重点名校十校联考最后数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,立体图形的俯视图是
A. B. C. D.
2.如图,AB为⊙O的直径,C为⊙O上的一动点(不与A、B重合),CD⊥AB于D,∠OCD的平分线交⊙O于P,则当C在⊙O上运动时,点P的位置( )
A.随点C的运动而变化
B.不变
C.在使PA=OA的劣弧上
D.无法确定
3.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是抛物线上两点,则y1<y2,其中结论正确的是( )
A.①② B.②③ C.②④ D.①③④
4.已知A(,),B(2,)两点在双曲线上,且,则m的取
值范围是( )
A. B. C. D.
5.如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )
A.y=(x﹣2)2-2 B.y=(x﹣2)2+7
C.y=(x﹣2)2-5 D.y=(x﹣2)2+4
6.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是 ()
A. B. C. D.
7.用尺现作图的方法在一个平行四边形内作菱形,下列作法错误的是 ( )
A. B. C. D.
8.数轴上有A,B,C,D四个点,其中绝对值大于2的点是( )
A.点A B.点B C.点C D.点D
9.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点E是△ABC的内心,过点E作EF∥AB交AC于点F,则EF的长为( )
A. B. C. D.
10.不等式组的解在数轴上表示为( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.亲爱的同学们,在我们的生活中处处有数学的身影.请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,就得到一个著名的几何定理,请你写出这一定理的结论:“三角形的三个内角和等于_______°.”
12.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.
13.若关于x的函数与x轴仅有一个公共点,则实数k的值为 .
14.计算:___________.
15.将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt△BCD沿射线BD方向平移,在平移的过程中,当点B的移动距离为 时,四边ABC1D1为矩形;当点B的移动距离为 时,四边形ABC1D1为菱形.
16.阅读材料:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.设CD=x,若AB=4,DE=2,BD=8,则可用含x的代数式表示AC+CE的长为.然后利用几何知识可知:当A、C、E在一条直线上时,x=时,AC+CE的最小值为1.根据以上阅读材料,可构图求出代数式的最小值为_____.
17.已知a+b=4,a-b=3,则a2-b2=____________.
三、解答题(共7小题,满分69分)
18.(10分)如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58°、45°.从F测得C、A的仰角分别为22°、70°.求建筑物AB的高度(精确到0.1m).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.1.)
19.(5分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.
(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ;
(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.
20.(8分)先化简,再求值:,其中x=1.
21.(10分)如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.
(1)在方格纸中画出以AB为斜边的等腰直角三角形ABE,点E在小正方形的顶点上;
(2)在方格纸中画出以CD为对角线的矩形CMDN(顶点字母按逆时针顺序),且面积为10,点M、N均在小正方形的顶点上;
(3)连接ME,并直接写出EM的长.
22.(10分)小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.
(1)求AD的长.
(2)求树长AB.
23.(12分)如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.
从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).
24.(14分)如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
试题分析:立体图形的俯视图是C.故选C.
考点:简单组合体的三视图.
2、B
【解析】
因为CP是∠OCD的平分线,所以∠DCP=∠OCP,所以∠DCP=∠OPC,则CD∥OP,所以弧AP等于弧BP,所以PA=PB.从而可得出答案.
【详解】
解:连接OP,
∵CP是∠OCD的平分线,
∴∠DCP=∠OCP,
又∵OC=OP,
∴∠OCP=∠OPC,
∴∠DCP=∠OPC,
∴CD∥OP,
又∵CD⊥AB,
∴OP⊥AB,
∴,
∴PA=PB.
∴点P是线段AB垂直平分线和圆的交点,
∴当C在⊙O上运动时,点P不动.
故选:B.
【点睛】
本题考查了圆心角、弦、弧之间的关系,以及平行线的判定和性质,在同圆或等圆中,等弧对等弦.
3、C
【解析】
试题分析:根据题意可得:a0,b0,c0,则abc0,则①错误;根据对称轴为x=1可得:=1,则-b=2a,即2a+b=0,则②正确;根据函数的轴对称可得:当x=2时,y0,即4a+2b+c0,则③错误;对于开口向下的函数,离对称轴越近则函数值越大,则,则④正确.
点睛:本题主要考查的就是二次函数的性质,属于中等题.如果开口向上,则a0,如果开口向下,则a0;如果对称轴在y轴左边,则b的符号与a相同,如果对称轴在y轴右边,则b的符号与a相反;如果题目中出现2a+b和2a-b的时候,我们要看对称轴与1或者-1的大小关系再进行判定;如果出现a+b+c,则看x=1时y的值;如果出现a-b+c,则看x=-1时y的值;如果出现4a+2b+c,则看x=2时y的值,以此类推;对于开口向上的函数,离对称轴越远则函数值越大,对于开口向下的函数,离对称轴越近则函数值越大.
4、D
【解析】
∵A(,),B(2,)两点在双曲线上,
∴根据点在曲线上,点的坐标满足方程的关系,得.
∵,∴,解得.故选D.
【详解】
请在此输入详解!
5、D
【解析】
∵函数的图象过点A(1,m),B(4,n),
∴m==,n==3,
∴A(1,),B(4,3),
过A作AC∥x轴,交B′B的延长线于点C,则C(4,),
∴AC=4﹣1=3,
∵曲线段AB扫过的面积为9(图中的阴影部分),
∴AC•AA′=3AA′=9,
∴AA′=3,即将函数的图象沿y轴向上平移3个单位长度得到一条新函数的图象,
∴新图象的函数表达式是.
故选D.
6、A
【解析】
从左面看,得到左边2个正方形,中间3个正方形,右边1个正方形.故选A.
7、A
【解析】
根据菱形的判定方法一一判定即可
【详解】
作的是角平分线,只能说明四边形ABCD是平行四边形,故A符合题意
B、作的是连接AC,分别做两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,能得到AB=BC,AD=CD,又AB∥CD,所以四边形ABCD为菱形,B不符合题意
C、由辅助线可知AD=AB=BC,又AD∥BC,所以四边形ABCD为菱形,C不符合题意
D、作的是BD垂直平分线,由平行四边形中心对称性质可知AC与BD互相平分且垂直,得到四边形ABCD是菱形,D不符合题意
故选A
【点睛】
本题考查平行四边形的判定,能理解每个图的作法是本题解题关键
8、A
【解析】
根据绝对值的含义和求法,判断出绝对值等于2的数是﹣2和2,据此判断出绝对值等于2的点是哪个点即可.
【详解】
解:∵绝对值等于2的数是﹣2和2,
∴绝对值等于2的点是点A.
故选A.
【点睛】
此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.
9、A
【解析】
过E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依据△ABC∽△GEF,即可得到EG:EF:GF,根据斜边的长列方程即可得到结论.
【详解】
过E作EG∥BC,交AC于G,则∠BCE=∠CEG.
∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.
∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.
∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,设EG=4k=AG,则EF=3k=CF,FG=5k.
∵AC=10,∴3k+5k+4k=10,∴k=,∴EF=3k=.
故选A.
【点睛】
本题考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及构造等腰三角形.
10、C
【解析】
先解每一个不等式,再根据结果判断数轴表示的正确方法.
【详解】
解:由不等式①,得3x>5-2,解得x>1,
由不等式②,得-2x≥1-5,解得x≤2,
∴数轴表示的正确方法为C.
故选C.
【点睛】
考核知识点:解不等式组.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
本题主要考查了三角形的内角和定理.
解:根据三角形的内角和可知填:1.
12、
【解析】
试题解析:∵共6个数,小于5的有4个,∴P(小于5)==.故答案为.
13、0或-1。
【解析】由于没有交待是二次函数,故应分两种情况:
当k=0时,函数是一次函数,与x轴仅有一个公共点。
当k≠0时,函数是二次函数,若函数与x轴仅有一个公共点,则有两个相等的实数根,即。
综上所述,若关于x的函数与x轴仅有一个公共点,则实数k的值为0或-1。
14、x+1
【解析】
先通分,进行分式的加减法,再将分子进行因式分解,然后约分即可求出结果.
【详解】
解:
=
.
故答案是:x+1.
【点睛】
本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.
15、,.
【解析】
试题分析:当点B的移动距离为时,∠C1BB1=60°,则∠ABC1=90°,根据有一直角的平行四边形是矩形,可判定四边形ABC1D1为矩形;当点B的移动距离为时,D、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定四边形ABC1D1为菱形.
试题解析:如图:
当四边形ABC1D是矩形时,∠B1BC1=90°﹣30°=60°,
∵B1C1=1,
∴BB1=,
当点B的移动距离为时,四边形ABC1D1为矩形;
当四边形ABC1D是菱形时,∠ABD1=∠C1BD1=30°,
∵B1C1=1,
∴BB1=,
当点B的移动距离为时,四边形ABC1D1为菱形.
考点:1.菱形的判定;2.矩形的判定;3.平移的性质.
16、4
【解析】
根据已知图象,重新构造直角三角形,利用三角形相似得出CD的长,进而利用勾股定理得出最短路径问题.
【详解】
如图所示:
C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.设CD=x,
若AB=5,DE=3,BD=12,
当A,C,E,在一条直线上,AE最短,
∵AB⊥BD,ED⊥BD,
∴AB∥DE,
∴△ABC∽EDC,
∴,
∴,
解得:DC=.
即当x=时,代数式有最小值,
此时为:.
故答案是:4.
【点睛】
考查最短路线问题,利用了数形结合的思想,可通过构造直角三角形,利用勾股定理求解.
17、1.
【解析】
a2-b2=(a+b)(a-b)=4×3=1.
故答案为:1.
考点:平方差公式.
三、解答题(共7小题,满分69分)
18、建筑物AB的高度约为5.9米
【解析】
在△CED中,得出DE,在△CFD中,得出DF,进而得出EF,列出方程即可得出建筑物AB的高度;
【详解】
在Rt△CED中,∠CED=58°,
∵tan58°=,
∴DE= ,
在Rt△CFD中,∠CFD=22°,
∵tan22°= ,
∴DF= ,
∴EF=DF﹣DE=-,
同理:EF=BE﹣BF= ,
∴=-,
解得:AB≈5.9(米),
答:建筑物AB的高度约为5.9米.
【点睛】
考查解直角三角形的应用,解题的关键是明确题意,利用数形结合的思想解答问题.
19、(1);(2)列表见解析,.
【解析】
试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.
试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:
小华
小丽
-1
0
2
-1
(-1,-1)
(-1,0)
(-1,2)
0
(0,-1)
(0,0)
(0,2)
2
(2,-1)
(2,0)
(2,2)
共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,
∴P(点M落在如图所示的正方形网格内)==.
考点:1列表或树状图求概率;2平面直角坐标系.
20、
【解析】
这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先化简,然后再代入求值.
【详解】
解:原式=•﹣
=﹣
=﹣
=,
当x=1时,原式==.
【点睛】
本题考查了分式的化简求值,解题的关键是熟练的掌握分式的运算法则.
21、(1)画图见解析;(2)画图见解析;(3).
【解析】
(1)直接利用直角三角形的性质结合勾股定理得出符合题意的图形;
(2)根据矩形的性质画出符合题意的图形;
(3)根据题意利用勾股定理得出结论.
【详解】
(1)如图所示;
(2)如图所示;
(3)如图所示,在直角三角形中,根据勾股定理得EM=.
【点睛】
本题考查了勾股定理与作图,解题的关键是熟练的掌握直角三角形的性质与勾股定理.
22、(1);(2).
【解析】
试题分析:(1)过点A作AE⊥CB于点E,设AE=x,分别表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;
(2)过点B作BF⊥AC于点F,设BF=y,分别表示出CF、AF,解出y的值后,在Rt△ABF中可求出AB的长度.
试题解析:(1)如图,过A作AH⊥CB于H,设AH=x,CH=x,DH=x.
∵CH―DH=CD,∴x―x=10,∴x=.
∵∠ADH=45°,∴AD=x=.
(2)如图,过B作BM ⊥AD于M.
∵∠1=75°,∠ADB=45°,∴∠DAB=30°.
设MB=m,∴AB=2m,AM=m,DM=m.
∵AD=AM+DM,∴=m+m.∴m=.∴AB=2m=.
23、(1).(2)公平.
【解析】
试题分析:(1)首先根据题意结合概率公式可得答案;
(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.
试题解析:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是;
(2)列表得:
A
B
C
D
A
(A,B)
(A,C)
(A,D)
B
(B,A)
(B,C)
(B,D)
C
(C,A)
(C,B)
(C,D)
D
(D,A)
(D,B)
(D,C)
共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,
∴P(两张都是轴对称图形)=,因此这个游戏公平.
考点:游戏公平性;轴对称图形;中心对称图形;概率公式;列表法与树状图法.
24、证明见解析.
【解析】
根据在同圆中等弦对的弧相等,AB、CD是⊙O的直径,则,由FD=EB,得,,由等量减去等量仍是等量得:,即,由等弧对的圆周角相等,得∠D=∠B.
【详解】
解:方法(一)
证明:∵AB、CD是⊙O的直径,
∴.
∵FD=EB,
∴.
∴.
即.
∴∠D=∠B.
方法(二)
证明:如图,连接CF,AE.
∵AB、CD是⊙O的直径,
∴∠F=∠E=90°(直径所对的圆周角是直角).
∵AB=CD,DF=BE,
∴Rt△DFC≌Rt△BEA(HL).
∴∠D=∠B.
【点睛】
本题利用了在同圆中等弦对的弧相等,等弧对的弦,圆周角相等,等量减去等量仍是等量求解.
浙江杭州西湖区重点名校2021-2022学年十校联考最后数学试题含解析: 这是一份浙江杭州西湖区重点名校2021-2022学年十校联考最后数学试题含解析,共19页。试卷主要包含了答题时请按要求用笔,已知m=,n=,则代数式的值为等内容,欢迎下载使用。
2022届上海市长宁、金山区重点名校十校联考最后数学试题含解析: 这是一份2022届上海市长宁、金山区重点名校十校联考最后数学试题含解析,共16页。试卷主要包含了下列交通标志是中心对称图形的为等内容,欢迎下载使用。
2021-2022学年上海市崇明县重点中学十校联考最后数学试题含解析: 这是一份2021-2022学年上海市崇明县重点中学十校联考最后数学试题含解析,共18页。试卷主要包含了答题时请按要求用笔,下列说法中,正确的是等内容,欢迎下载使用。