|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年山东省济南章丘区五校联考中考猜题数学试卷含解析
    立即下载
    加入资料篮
    2021-2022学年山东省济南章丘区五校联考中考猜题数学试卷含解析01
    2021-2022学年山东省济南章丘区五校联考中考猜题数学试卷含解析02
    2021-2022学年山东省济南章丘区五校联考中考猜题数学试卷含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年山东省济南章丘区五校联考中考猜题数学试卷含解析

    展开
    这是一份2021-2022学年山东省济南章丘区五校联考中考猜题数学试卷含解析,共19页。试卷主要包含了不等式组的解集为,计算-3-1的结果是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.解分式方程时,去分母后变形为
    A. B.
    C. D.
    2.下列运算正确的是( )
    A.(a2)3=a5 B.(a-b)2=a2-b2 C.3=3 D.=-3
    3.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是( )

    A.8,9 B.8,8.5 C.16,8.5 D.16,10.5
    4.函数y=中,自变量x的取值范围是(  )
    A.x>3 B.x<3 C.x=3 D.x≠3
    5.如图,正方形ABCD的顶点C在正方形AEFG的边AE上,AB=2,AE=,则点G 到BE的距离是(   )

    A. B. C. D.
    6.不等式组的解集为.则的取值范围为( )
    A. B. C. D.
    7.如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则A、B之间的距离为(  )

    A.50m B.25m C.(50﹣)m D.(50﹣25)m
    8.如图,在菱形ABCD中,∠A=60°,E是AB边上一动点(不与A、B重合),且∠EDF=∠A,则下列结论错误的是(  )

    A.AE=BF B.∠ADE=∠BEF
    C.△DEF是等边三角形 D.△BEF是等腰三角形
    9.计算-3-1的结果是(  )
    A.2 B.-2 C.4 D.-4
    10.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是(  )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.小红沿坡比为1:的斜坡上走了100米,则她实际上升了_____米.

    12.如图,AB,AC分别为⊙O的内接正六边形,内接正方形的一边,BC是圆内接n边形的一边,则n等于_____.

    13.已知线段a=4,线段b=9,则a,b的比例中项是_____.
    14.化简:______.
    15.如图,在2×4的正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,△ABC的顶点都在格点上,将△ABC绕着点C按顺时针方向旋转一定角度后,得到△A'B'C',点A'、B'在格点上,则点A走过的路径长为_____(结果保留π)

    16.计算()()的结果等于_____.
    17.一个几何体的三视图如左图所示,则这个几何体是( )

    A. B. C. D.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,∠A=∠D,∠B=∠E,AF=DC.求证:BC=EF.

    19.(5分)如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.
    (1)求证:DF是BF和CF的比例中项;
    (2)在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.

    20.(8分)如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.试猜想线段BG和AE的数量关系是_____;将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°),
    ①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;
    ②若BC=DE=4,当AE取最大值时,求AF的值.

    21.(10分)先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.
    22.(10分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.求证:DE=OE;若CD∥AB,求证:BC是⊙O的切线;在(2)的条件下,求证:四边形ABCD是菱形.

    23.(12分)如图,直线y=x与双曲线y=(k>0,x>0)交于点A,将直线y=x向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B.

    (1)设点B的横坐标分别为b,试用只含有字母b的代数式表示k;
    (2)若OA=3BC,求k的值.
    24.(14分)下面是“作三角形一边上的高”的尺规作图过程.
    已知:△ABC.
    求作:△ABC的边BC上的高AD.
    作法:如图2,

    (1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;
    (2)作直线AE交BC边于点D.所以线段AD就是所求作的高.
    请回答:该尺规作图的依据是______.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    试题分析:方程,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D.
    考点:解分式方程的步骤.
    2、D
    【解析】
    试题分析:A、原式=a6,错误;B、原式=a2﹣2ab+b2,错误;C、原式不能合并,错误;
    D、原式=﹣3,正确,故选D
    考点:完全平方公式;合并同类项;同底数幂的乘法;平方差公式.
    3、A
    【解析】
    根据中位数、众数的概念分别求得这组数据的中位数、众数.
    【详解】
    解:众数是一组数据中出现次数最多的数,即8;
    而将这组数据从小到大的顺序排列后,处于20,21两个数的平均数,由中位数的定义可知,这组数据的中位数是9.
    故选A.
    【点睛】
    考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.
    4、D
    【解析】
    由题意得,x﹣1≠0,
    解得x≠1.
    故选D.
    5、A
    【解析】
    根据平行线的判定,可得AB与GE的关系,根据平行线间的距离相等,可得△BEG与△AEG的关系,根据根据勾股定理,可得AH与BE的关系,再根据勾股定理,可得BE的长,根据三角形的面积公式,可得G到BE的距离.
    【详解】
    连接GB、GE,

    由已知可知∠BAE=45°.
    又∵GE为正方形AEFG的对角线,
    ∴∠AEG=45°.
    ∴AB∥GE.
    ∵AE=4,AB与GE间的距离相等,
    ∴GE=8,S△BEG=S△AEG=SAEFG=1.
    过点B作BH⊥AE于点H,
    ∵AB=2,
    ∴BH=AH=.
    ∴HE=3.
    ∴BE=2.
    设点G到BE的距离为h.
    ∴S△BEG=•BE•h=×2×h=1.
    ∴h=.
    即点G到BE的距离为.
    故选A.
    【点睛】
    本题主要考查了几何变换综合题.涉及正方形的性质,全等三角形的判定及性质,等积式及四点共圆周的知识,综合性强.解题的关键是运用等积式及四点共圆的判定及性质求解.
    6、B
    【解析】
    求出不等式组的解集,根据已知得出关于k的不等式,求出不等式的解集即可.
    【详解】
    解:解不等式组,得.
    ∵不等式组的解集为x<2,
    ∴k+1≥2,
    解得k≥1.
    故选:B.
    【点睛】
    本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k的不等式,难度适中.
    7、C
    【解析】
    如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN分别求得CM、CN的长度,则易得AB =MN=CM﹣CN,即可得到结论.
    【详解】
    如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.
    则AB=MN,AM=BN.
    在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.
    在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).
    则AB=MN=(50﹣)m.
    故选C.

    【点睛】
    本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.
    8、D
    【解析】
    连接BD,可得△ADE≌△BDF,然后可证得DE=DF,AE=BF,即可得△DEF是等边三角形,然后可证得∠ADE=∠BEF.
    【详解】
    连接BD,∵四边形ABCD是菱形,
    ∴AD=AB,∠ADB=∠ADC,AB∥CD,
    ∵∠A=60°,
    ∴∠ADC=120°,∠ADB=60°,
    同理:∠DBF=60°,
    即∠A=∠DBF,
    ∴△ABD是等边三角形,
    ∴AD=BD,
    ∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,
    ∴∠ADE=∠BDF,
    ∵在△ADE和△BDF中,

    ∴△ADE≌△BDF(ASA),
    ∴DE=DF,AE=BF,故A正确;
    ∵∠EDF=60°,
    ∴△EDF是等边三角形,
    ∴C正确;
    ∴∠DEF=60°,
    ∴∠AED+∠BEF=120°,
    ∵∠AED+∠ADE=180°-∠A=120°,
    ∴∠ADE=∠BEF;
    故B正确.
    ∵△ADE≌△BDF,
    ∴AE=BF,
    同理:BE=CF,
    但BE不一定等于BF.
    故D错误.
    故选D.
    【点睛】
    本题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题.
    9、D
    【解析】试题解析:-3-1=-3+(-1)=-(3+1)=-1.
    故选D.
    10、C
    【解析】
    严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.
    【详解】
    根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直.
    故选C.
    【点睛】
    本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.

    二、填空题(共7小题,每小题3分,满分21分)
    11、50
    【解析】
    根据题意设铅直距离为x,则水平距离为,根据勾股定理求出x的值,即可得到结果.
    【详解】
    解:设铅直距离为x,则水平距离为,
    根据题意得:,
    解得:(负值舍去),
    则她实际上升了50米,
    故答案为:50
    【点睛】
    本题考查了解直角三角形的应用,此题关键是用同一未知数表示出下降高度和水平前进距离.
    12、12
    【解析】
    连接AO,BO,CO,如图所示:

    ∵AB、AC分别为⊙O的内接正六边形、内接正方形的一边,
    ∴∠AOB==60°,∠AOC==90°,
    ∴∠BOC=30°,
    ∴n==12,
    故答案为12.
    13、6
    【解析】
    根据已知线段a=4,b=9,设线段x是a,b的比例中项,列出等式,利用两内项之积等于两外项之积即可得出答案.
    【详解】
    解:∵a=4,b=9,设线段x是a,b的比例中项,
    ∴ ,
    ∴x2=ab=4×9=36,
    ∴x=6,x=﹣6(舍去).
    故答案为6
    【点睛】
    本题主要考查比例线段问题,解题关键是利用两内项之积等于两外项之积解答.
    14、3
    【解析】
    分析:根据算术平方根的概念求解即可.
    详解:因为32=9
    所以=3.
    故答案为3.
    点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.
    15、
    【解析】
    分析:连接AA′,根据勾股定理求出AC=AC′,及AA′的长,然后根据勾股定理的逆定理得出△ACA′为等腰直角三角形,然后根据弧长公式求解即可.
    详解:连接AA′,如图所示.
    ∵AC=A′C=,AA′=,
    ∴AC2+A′C2=AA′2,
    ∴△ACA′为等腰直角三角形,
    ∴∠ACA′=90°,
    ∴点A走过的路径长=×2πAC=π.
    故答案为:π.

    点睛:本题主要考查了几何变换的类型以及勾股定理及逆定理的运用,弧长公式,解题时注意:在旋转变换下,对应线段相等.解决问题的关键是找出变换的规律,根据弧长公式求解.
    16、4
    【解析】
    利用平方差公式计算.
    【详解】
    解:原式=()2-()2
    =7-3
    =4.
    故答案为:4.
    【点睛】
    本题考查了二次根式的混合运算.
    17、A
    【解析】
    根据主视图和左视图可知该几何体是柱体,根据俯视图可知该几何体是竖立的三棱柱.
    【详解】
    根据主视图和左视图可知该几何体是柱体,根据俯视图可知该几何体是竖立的三棱柱.主视图中间的线是实线.
    故选A.
    【点睛】
    考查简单几何体的三视图,掌握常见几何体的三视图是解题的关键.

    三、解答题(共7小题,满分69分)
    18、证明见解析.
    【解析】
    想证明BC=EF,可利用AAS证明△ABC≌△DEF即可.
    【详解】
    解:∵AF=DC,
    ∴AF+FC=FC+CD,
    ∴AC=FD,
    在△ABC 和△DEF 中,

    ∴△ABC≌△DEF(AAS)
    ∴BC=EF.
    【点睛】
    本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    19、证明见解析
    【解析】
    试题分析:(1)根据已知求得∠BDF=∠BCD,再根据∠BFD=∠DFC,证明△BFD∽△DFC,从而得BF:DF=DF:FC,进行变形即得;
    (2)由已知证明△AEG∽△ADC,得到∠AEG=∠ADC=90°,从而得EG∥BC,继而得 ,
    由(1)可得 ,从而得 ,问题得证.
    试题解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,
    ∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,
    ∵E是AC的中点,
    ∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,
    ∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,
    又∵∠BFD=∠DFC,
    ∴△BFD∽△DFC,
    ∴BF:DF=DF:FC,
    ∴DF2=BF·CF;
    (2)∵AE·AC=ED·DF,
    ∴ ,
    又∵∠A=∠A,
    ∴△AEG∽△ADC,
    ∴∠AEG=∠ADC=90°,
    ∴EG∥BC,
    ∴ ,
    由(1)知△DFD∽△DFC,
    ∴ ,
    ∴ ,
    ∴EG·CF=ED·DF.
    20、(1)BG=AE.(2)①成立BG=AE.证明见解析.②AF=.
    【解析】
    (1)由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论;
    (2)①如图2,连接AD,由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论;
    ②由①可知BG=AE,当BG取得最大值时,AE取得最大值,由勾股定理就可以得出结论.
    【详解】
    (1)BG=AE.
    理由:如图1,∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,
    ∴AD⊥BC,BD=CD,
    ∴∠ADB=∠ADC=90°.
    ∵四边形DEFG是正方形,
    ∴DE=DG.
    在△BDG和△ADE中,
    BD=AD,∠BDG=∠ADE,GD=ED,
    ∴△ADE≌△BDG(SAS),
    ∴BG=AE.
    故答案为BG=AE;
    (2)①成立BG=AE.
    理由:如图2,连接AD,

    ∵在Rt△BAC中,D为斜边BC中点,
    ∴AD=BD,AD⊥BC,
    ∴∠ADG+∠GDB=90°.         
    ∵四边形EFGD为正方形,
    ∴DE=DG,且∠GDE=90°,
    ∴∠ADG+∠ADE=90°,
    ∴∠BDG=∠ADE.
    在△BDG和△ADE中,
    BD=AD,∠BDG=∠ADE,GD=ED,
    ∴△BDG≌△ADE(SAS),
    ∴BG=AE;                           
    ②∵BG=AE,
    ∴当BG取得最大值时,AE取得最大值.
    如图3,当旋转角为270°时,BG=AE.
    ∵BC=DE=4,
    ∴BG=2+4=6.
    ∴AE=6.
    在Rt△AEF中,由勾股定理,得
    AF= =,
    ∴AF=2 .

    【点睛】
    本题考查的知识点是全等三角形的判定与性质及勾股定理及正方形的性质和等腰直角三角形,解题的关键是熟练的掌握全等三角形的判定与性质及勾股定理以及正方形的性质和等腰直角三角形.
    21、解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4 =x2﹣1.
    当x=﹣时,原式=(﹣)2﹣1=3﹣1=﹣2.
    【解析】
    应用整式的混合运算法则进行化简,最后代入x值求值.
    22、(1)证明见解析;(2)证明见解析;(3)证明见解析.
    【解析】
    (1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;
    (2)根据等腰三角形的性质得到∠3=∠COD=∠DEO=60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO=∠CDO=90°,于是得到结论;
    (3)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.
    【详解】
    (1)如图,连接OD,

    ∵CD是⊙O的切线,
    ∴OD⊥CD,
    ∴∠2+∠3=∠1+∠COD=90°,
    ∵DE=EC,
    ∴∠1=∠2,
    ∴∠3=∠COD,
    ∴DE=OE;
    (2)∵OD=OE,
    ∴OD=DE=OE,
    ∴∠3=∠COD=∠DEO=60°,
    ∴∠2=∠1=30°,
    ∵AB∥CD,
    ∴∠4=∠1,
    ∴∠1=∠2=∠4=∠OBA=30°,
    ∴∠BOC=∠DOC=60°,
    在△CDO与△CBO中,,
    ∴△CDO≌△CBO(SAS),
    ∴∠CBO=∠CDO=90°,
    ∴OB⊥BC,
    ∴BC是⊙O的切线;
    (3)∵OA=OB=OE,OE=DE=EC,
    ∴OA=OB=DE=EC,
    ∵AB∥CD,
    ∴∠4=∠1,
    ∴∠1=∠2=∠4=∠OBA=30°,
    ∴△ABO≌△CDE(AAS),
    ∴AB=CD,
    ∴四边形ABCD是平行四边形,
    ∴∠DAE=∠DOE=30°,
    ∴∠1=∠DAE,
    ∴CD=AD,
    ∴▱ABCD是菱形.
    【点睛】
    此题主要考查了切线的性质,同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE是解本题的关键.
    23、(1)k=b2+4b;(2).
    【解析】
    试题分析:(1)分别求出点B的坐标,即可解答.
    (2)先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,再设A(3x,x),由于OA=3BC,故可得出B(x,x+4),再根据反比例函数中k=xy为定值求出x
    试题解析:(1)∵将直线y=向上平移4个单位长度后,与y轴交于点C,
    ∴平移后直线的解析式为y=+4,
    ∵点B在直线y=+4上,
    ∴B(b,b+4),
    ∵点B在双曲线y=上,
    ∴B(b,),
    令b+4=

    (2)分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x),
    ∵OA=3BC,BC∥OA,CF∥x轴,
    ∴CF=OD,
    ∵点A、B在双曲线y=上,
    ∴3b•b=,解得b=1,
    ∴k=3×1××1=.

    考点:反比例函数综合题.
    24、到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线
    【解析】
    利用作法和线段垂直平分线定理的逆定理可得到BC垂直平分AE,然后根据三角形高的定义得到AD为高
    【详解】
    解:由作法得BC垂直平分AE,
    所以该尺规作图的依据为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.
    故答案为到一条线段两个端点距离相等的点,在这条线段的垂直平分线上;三角形的高的定义;两点确定一条直线.
    【点睛】
    此题考查三角形高的定义,解题的关键在于利用线段垂直平分线定理的逆定理求解.

    相关试卷

    浙江省吴兴区七校联考2021-2022学年中考猜题数学试卷含解析: 这是一份浙江省吴兴区七校联考2021-2022学年中考猜题数学试卷含解析,共20页。试卷主要包含了如图,一、单选题等内容,欢迎下载使用。

    山东省青岛五校联考2021-2022学年中考猜题数学试卷含解析: 这是一份山东省青岛五校联考2021-2022学年中考猜题数学试卷含解析,共22页。试卷主要包含了已知,在中,,,下列结论中,正确的是,如图,空心圆柱体的左视图是等内容,欢迎下载使用。

    江苏省南通崇川区四校联考2021-2022学年中考猜题数学试卷含解析: 这是一份江苏省南通崇川区四校联考2021-2022学年中考猜题数学试卷含解析,共22页。试卷主要包含了如图,在中,,,,则等于等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map