终身会员
搜索
    上传资料 赚现金

    2021滁州定远县育才学校高二下学期第三次月考数学(理)试卷含答案

    立即下载
    加入资料篮
    2021滁州定远县育才学校高二下学期第三次月考数学(理)试卷含答案第1页
    2021滁州定远县育才学校高二下学期第三次月考数学(理)试卷含答案第2页
    2021滁州定远县育才学校高二下学期第三次月考数学(理)试卷含答案第3页
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021滁州定远县育才学校高二下学期第三次月考数学(理)试卷含答案

    展开

    这是一份2021滁州定远县育才学校高二下学期第三次月考数学(理)试卷含答案,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    育才学校2020-2021学年度第二学期第三次月考高二理科数学
    一、选择题(本大题共12小题,每小题5分,共60分)1、设 处可导, , (    )
    A.                 B.                C.                  D. 2.下列函数中,内为增函数的是(   )A.                  B.                  C.                   D. 3.一个物体的运动方程为,其中的单位是米, 的单位是秒,那么物体在3秒末的瞬时速度是(   )A.8/       B.7米秒      C.6/         D.5/4、曲线 在点 处的切线与坐标轴围成的三角形面积为(    ) A.               B.             C.                  D. 5.,等于(   )A.2         B.0        C.-2         D.-46.设曲线上任一点切线斜率为,则函数的部分图象可以为(   )A. B.
    C. D.7.给出下列结论:;            ;,;       .其中正确的个数是(    )A.0          B.1          C.2         D.38.函数的单调递增区间是(   )A.              B.                C.               D. 9.直线与曲线相切于点,的值等于(   )A.2          B.-1         C.-2         D.110.设曲线在点处的切线与轴的交点的横坐标为,的值为(    )A.                             B.                   C.                        D. 11.是定义在上的奇函数, ,,成立,则不等式的解集是(   )A.   B.
    C.   D. 12.设函数R上可导,其导函数为,且函数图象如图所示,则下列结论中一定成立的是(   )A.函数有极大值和极小值            B.函数有极大值和极小值
    C.函数有极大值和极小值         D.函数有极大值和极小值 二、填空题(本大题共4小题,每小题5分,共20分)13.若函数R上的单调函数,则实数的取值范围是____________.14.已知曲线在点处的切线与曲线相切,__________.15、若点 是曲线 上任意一点,则点 到直线 的最小距离为_____________. 16.已知函数有零点,的取值范围是__________. 三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知函数(1)求曲线在点处的切线方程(2)求经过点的曲线的切线方程   18.(本小题满分12分)求下列函数的导数
    1.                          2. 3. y=(1+cos 2x)3    19.(本小题满分12分)已知函数(其中常数), 是奇函数(1)的表达式;(2)上的最大值和最小值.    20.(本小题满分12分)某商场销售某件商品的经验表明,该商品每日的销量 (单位:千克)与销售价格 (单位:/千克)满足关系式,其中,为常数.已知销售价格为/千克时,每日可售出该商品千克.
    1求实数的值;
    2若该商品的成本为/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大,并求出最大值。    21.(本小题满分12分)已知函数.(1).讨论的单调性;(2).是否存在,使得在区间的最小值为且最大值为1?若存在,求出的所有值;若不存在,说明理由.     22.(本小题满分12分)设函数,曲线,且在点处的切线斜率为.
    (1)的值;
    (2)证明: .育才学校2020-2021学年度第二学期第三次月考高二理科数学试题卷    命题人:杭波答案一、选择题1D    2. B   3. D   4B   5. D  6. C  7. B  8. D   9. D   10. B11.D    12. D二、填空题13.答案:14.答案:815 16.答案:三、解答题17.答案:1.函数的导数为,
    可得曲线在点处的切线斜率为,
    切点为,
    即有曲线在点处的切线方程为,
    即为;
    2.设切点为,可得,
    的导数,
    可得切线的斜率为,
    切线的方程为,
    由切线经过点,可得
    ,
    化为,解得.
    则切线的方程为,
    即为.解析:18.答案:1.方法: 方法二:∵,. 2. 
     3. ∴y′=3(1+cos 2x)2·(1+cos 2x)′3(1+cos 2x)2·(-sin 2x)·(2x)′=-6sin 2x·(1+cos 2x)2=-6sin 2x·(2cos2x)2=-6sin 2x·4cos4x=-48sinxcos5x.19.:∵(其中常数), ,是奇函数,,;
    ,,解得,,,函数单调递增,,,函数单调递减,,,20.答案:1, ,由函数式,,.
    21知该商品每日的销售量,商场每日销售该商品所获得的利润为,,,,,, ,函数上递增;, ,函数上递减;,函数取得最大值.所以当销售价格为/千克时,商场每日销售该商品所获的利润最大.解析:21.答案:(1).,得x=0.,则当时,时,.故单调递增,在单调递减;单调递增;,则当时,;当时,.故单调递增,在单调递减.(2).满足题设条件的存在..时,由1知,单调递增,所以在区间的最小值为,最大值为.此时满足题设条件当且仅当,即.时,由1知,单调递减,所以在区间的最大值为,最小值为.此时满足题设条件当且仅当,即.时,由(1)知,的最小值为,最大值为b,则,与矛盾.,则,与矛盾.综上,当且仅当时,的最小值为,最大值为1解析:22.答案:1. .由已知条件得,解得.
    2.证明: 的定义域为,,,., ;, .所以单调递增,单调递减.,故当, ,. 

    相关试卷

    2021滁州定远县育才学校高二下学期第三次月考数学(文)试卷含答案:

    这是一份2021滁州定远县育才学校高二下学期第三次月考数学(文)试卷含答案

    2021滁州定远县育才学校高三上学期第三次月考数学(理)试题含答案:

    这是一份2021滁州定远县育才学校高三上学期第三次月考数学(理)试题含答案

    2021滁州定远县育才学校高三3月月考数学(理)试题含答案:

    这是一份2021滁州定远县育才学校高三3月月考数学(理)试题含答案,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map