年终活动
搜索
    上传资料 赚现金

    2021高考真题――全国乙卷数学(理)含答案

    2021高考真题――全国乙卷数学(理)含答案第1页
    2021高考真题――全国乙卷数学(理)含答案第2页
    2021高考真题――全国乙卷数学(理)含答案第3页
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021高考真题――全国乙卷数学(理)含答案

    展开

    这是一份2021高考真题――全国乙卷数学(理)含答案,共10页。试卷主要包含了在区间等内容,欢迎下载使用。
    2021年普通高等学校招生全国统一考试理科数学乙卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设2(z+)+3(z-)=4+6i,则z=( ).A.1-2iB.1+2iC.1+iD.1-i2.已知集合S=s|s=2n+1,nZ},T=t|t=4n+1,nZ},则S∩T=( )A. B.S C.T D.Z3.已知命题p:xRsinx<1;命题q:x∈R1,则下列命题中为真命题的是( )A.pqB.pqC.pqD.(pVq)4.设函数f(x)=,则下列函数中为奇函数的是( )A.f(x-1)-1B.f(x-1)+1C.f(x+1)-1D.f(x+1)+15.在正方体ABCD-A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为( )A.B.C.D.6.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )A.60B.120C.240D.4807.把函数y=f(x)图象所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数y=sin(x-)的图像,则f(x)=( )A.sin()B. sin()C. sin()D. sin()8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于的概率为( )A. B. C. D.9.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海盗的高。如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”。则海岛的高AB=( ).A:B:C:D:10.设a≠0,若x=a为函数的极大值点,则( ).A:a<bB:a>bC:ab<a2D:ab>a211.设B是椭圆C:(a>b>0)的上顶点,若C上的任意一点P都满足,则C的离心率的取值范围是( ).A:B:C:D:12.,则( ).A:a<b<cB:bcaC:ba<cD:cab二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线C:(m>0)的一条渐近线为+my=0,则C的焦距为           .14.已知向量a=(1,3),b=(3,4),若(a-λb)⊥b,则λ=            15.记△ABC的内角A,B,C的对边分别为a,b,c,面积为,B=60°,a2+c2=3ac,则b=           .16.以图①为正视图和俯视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为           (写出符合要求的一组答案即可).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17-21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17.(12分)某厂研究了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为,样本方差分别记为s12和s22(1)    , s12,s22(2)    判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果-,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高.18.(12分)如图,四棱锥P-ABCD的底面是矩形,PD⊥底面ABCD,PD=DC=1,M为BC的中点,且PB⊥AM(1)    求BC(2)    求二面角A-PM-B的正弦值。19.(12分)记S n为数列{an}的前n项和,bn为数列{Sn}的前n项和,已知=2.(1)    证明:数列{bn}是等差数列;(2)    求{an}的通项公式.20.(12分)设函数f(x)=ln(a-x),已知x=0是函数y=xf(x)的极值点。(1)    求a;(2)    设函数g(x)=,证明:g(x)<1.21.(12 分)己知抛物线C:x2=2py(p>0)的焦点为F,且F与圆M:x2+(y+42=1上点的距离的最小值为4.1)求p;(2)若点P在M上,PA,PB是C的两条切线,A,B是切点,求PAB的最大值.(二)选考题:共10分,请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.[选修44:坐标系与参数方程](10分)在直角坐标系xOy中,C的圆心为C(2,1),半径为1.(1)写出C的一个参数方程;的极坐标方程化为直角坐标方程;(2)过点F(4,1)作C的两条切线, 以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条直线的极坐标方程.23.[选修45:不等式选讲](10分)已知函数f(x)=|x-a|+|x+3|.(1)当a=1时,求不等式f(x)≥6的解集;(2)若f(x)≥ —a ,求a的取值范围.2021年普通高等学校招生全国统一考试理科数学乙卷(参考答案 注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回 1-5 CCABD 6-10 CBBAD11-12 CB13.414.15.216.②⑤或③④17.解:(1)各项所求值如下所示=(9.8+10.3+10.0+10.2+9.9+9.8+10.0+10.1+10.2+9.7)=10.0=(10.1+10.4+10.1+10.0+10.1+10.3+10.6+10.5+10.4+10.5)=10.3=x [(9.7-10.0)2 + 2 x (9.8-10.0)2 + (9.9-10.0)2 + 2 X (10.0-10.0)2 + (10.1-10.0)2+2 x (10.2-10.0)2+(10.3-10.0)2] = 0.36,= x [(10.0-10.3)2 +3 x (10.1-10.3)2 +(10.3-10.3)2 +2 x (10.4-10.3)2+2 x (10.5-10.3)2+ (10.6-10.3)2] = 0.4.(2)(1)中数据得-=0.3,20.34显然-<2,所以不认为新设备生产产品的该项指标的均值较旧设备有显著提高。18.解:(1)因为PD⊥平面ABCD,且矩形ABCD中,ADDC,所以以,,分别为x,y,z轴正方向,D为原点建立空间直角坐标系D-xyzBC=t,A(t,0,0),B(t,1,0),M(,1,0),P(0,0,1),所以=(t,1,-1),=(,1,0),因为PBAM,所以=-+1=0,所以t=,所以BC=(2)设平面APM的一个法向量为m=(x,y,z),由于=(-,0,1),则令x=,得m=,1,2)。设平面PMB的一个法向量为n=xtytzt),则=1,得n=(0,1,1).所以cos(mn)===,所以二面角A-PM-B的正弦值为. 19.(1)由已知+=2,=Sn(n2)+=22bn-1+2=2bnbn-bn-1=(n2),b1=故{bn}是以为首项,为公差的等差数列。(2)由(1)知bn=+(n-1=,则+=2Sn=n=1时,a1=S1=n≥2时,an=Sn-Sn-1=-=故an=20.(1)[xf(x)]=x′f(x)+xf(x)当x=0时,[xf(x)]′=f(0)=lna=0,所以a=1(2)由f(x)=ln(1-x),得x<1当0<x<1时,f(x)=ln(1-x)<0,xf(x)<0;当x<0时,f(x)=ln(1-x)>0,xf(x)<0故即证x+f(x)xf(x),x+ln(1-x)-xln(1-x)>0令1-x=t(t>0且t≠1),x=1-t,即证1-t+lnt-(1-t)lnt>0令f(t)=1-t+lnt-(1-t)lnt,f(t)=-1--[(-1)lnt+]=-1++lnt-=lnt所以f(t)在(0,1)上单调递减,在(1,+上单调递增,故f(t)>f(1)=0,得证。 21.解:(1)焦点的最短距离为,所以p=2.(2)抛物线,设A(x1,y1,B(x2,y2),P(x0,y0),则,,且.,都过点P(x0,y0,则,即.联立,得.所以=,所以===..故当y0=-5时,达到最大,最大值为.22. (1)因为C的心为(2,1),半径为1.故C的参数方程为为参数). (2)设切线y=k(x-4)+1,即kx-y-4k+1=0.故 =1|2k|=,4=得k=±.故直线方程为y= (x-4)+1, y= (x-4)+1故两条切线的极坐方程为sin=cos-+1sin=cos+ +1.23.解:(l)a = 1时,f(x) = |x-1|+|x+3| 即求|x-1|+|x-3| 6 的解集.x1时,2x2 6,得x≥ 2;-3<x<1时,4≥6此时没有x满足条件;x≤-3时-2x-26.得x≤-4综上解集为(-,-4]U[2, -).(2) f(x)最小值>-a,而由绝对值的何意义,即求xa和-3距的最小值.xa和-3之时最小此时f(x)最小值为|a+3|,即|a+3|-a.A-3时,2a+3>0,得a>-a<-3 时,-a-3>-a,此时a不存在.综上,a>-. 

    相关试卷

    2023年高考全国乙卷数学(理)真题(原卷版):

    这是一份2023年高考全国乙卷数学(理)真题(原卷版),共5页。试卷主要包含了选择题,填空题,解答题,选做题等内容,欢迎下载使用。

    2023年高考全国乙卷数学(理)高考真题(原卷版):

    这是一份2023年高考全国乙卷数学(理)高考真题(原卷版),共4页。试卷主要包含了选择题,填空题,解答题,选做题等内容,欢迎下载使用。

    2023年高考全国乙卷数学(理)真题:

    这是一份2023年高考全国乙卷数学(理)真题,共6页。试卷主要包含了选择题,填空题,解答题,选做题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map