2022年广西北部湾经济区中考数学试卷解析版
展开2022年广西北部湾经济区中考数学试卷
一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)
1.(3分)﹣的相反数是( )
A. B.﹣ C.3 D.﹣3
2.(3分)2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神.下列的四个图中,能由如图所示的会徽经过平移得到的是( )
A. B. C. D.
3.(3分)空气由多种气体混合而成,为了直观介绍空气中各成分的百分比,最适合使用的统计图是( )
A.条形图 B.折线图 C.扇形图 D.直方图
4.(3分)如图,数轴上的点A表示的数是﹣1,则点A关于原点对称的点表示的数是( )
A.﹣2 B.0 C.1 D.2
5.(3分)不等式2x﹣4<10的解集是( )
A.x<3 B.x<7 C.x>3 D.x>7
6.(3分)如图,直线a∥b,∠1=55°,则∠2的度数是( )
A.35° B.45° C.55° D.125°
7.(3分)下列事件是必然事件的是( )
A.三角形内角和是180°
B.端午节赛龙舟,红队获得冠军
C.掷一枚均匀骰子,点数是6的一面朝上
D.打开电视,正在播放神舟十四号载人飞船发射实况
8.(3分)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC是( )
A.12sinα米 B.12cosα米 C.米 D.米
9.(3分)下列运算正确的是( )
A.a+a2=a3 B.a•a2=a3 C.a6÷a2=a3 D.(a﹣1)3=a3
10.(3分)《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边衬的宽度应是多少米?设边衬的宽度为x米,根据题意可列方程( )
A.= B.=
C.= D.=
11.(3分)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是( )
A.π B.π C.π D.π
12.(3分)已知反比例函数y=(b≠0)的图象如图所示,则一次函数y=cx﹣a(c≠0)和二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是( )
A. B.
C. D.
二、填空题(本大题共6小题,每小题2分,共12分.)
13.(2分)化简:= .
14.(2分)当x= 时,分式的值为零.
15.(2分)如图,一个质地均匀的正五边形转盘,指针的位置固定,当转盘自由转动停止后,观察指针指向区域内的数(若指针正好指向分界线,则重新转一次),这个数是一个奇数的概率是 .
16.(2分)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是 米.
17.(2分)阅读材料:整体代值是数学中常用的方法.例如“已知3a﹣b=2,求代数式6a﹣2b﹣1的值.”可以这样解:6a﹣2b﹣1=2(3a﹣b)﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x=2是关于x的一元一次方程ax+b=3的解,则代数式4a2+4ab+b2+4a+2b﹣1的值是 .
18.(2分)如图,在正方形ABCD中,AB=4,对角线AC,BD相交于点O.点E是对角线AC上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F为CD的中点,则△EGH′的周长是 .
三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)
19.(6分)计算:(﹣1+2)×3+22÷(﹣4).
20.(6分)先化简,再求值:(x+y)(x﹣y)+(xy2﹣2xy)÷x,其中x=1,y=.
21.(10分)如图,在▱ABCD中,BD是它的一条对角线.
(1)求证:△ABD≌△CDB;
(2)尺规作图:作BD的垂直平分线EF,分别交AD,BC于点E,F(不写作法,保留作图痕迹);
(3)连接BE,若∠DBE=25°,求∠AEB的度数.
22.(10分)综合与实践
【问题情境】数学活动课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动.
【实践发现】同学们随机收集芒果树、荔枝树的树叶各1片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据后,分别计算长宽比,整理数据如下:
1
2
3
4
5
6
7
8
9
10
芒果树叶的长宽比
3.8
3.7
3.5
3.4
3.8
4.0
3.6
4.0
3.6
4.0
荔枝树叶的长宽比
2.0
2.0
20
2.4
1.8
19
1.8
2.0
1.3
1.9
【实践探究】分析数据如下:
平均数
中位数
众数
方差
芒果树叶的长宽比
3.74
m
4.0
0.0424
荔枝树叶的长宽比
1.91
2.0
n
0.0669
【问题解决】
(1)上述表格中:m= ,n= ;
(2)①A同学说:“从树叶的长宽比的方差来看,我认为芒果树叶的形状差别大.”
②B同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的两倍.”
上面两位同学的说法中,合理的是 (填序号);
(3)现有一片长11cm,宽5.6cm的树叶,请判断这片树叶更可能来自于芒果、荔枝中的哪种树?并给出你的理由.
23.(10分)打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.
(1)求y与x的函数解析式,并写出自变量x的取值范围;
(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.
24.(10分)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.
(1)求证:DE是⊙O的切线;
(2)若=,AF=10,求⊙O的半径.
25.(10分)已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧).
(1)求点A,点B的坐标;
(2)如图,过点A的直线l:y=﹣x﹣1与抛物线的另一个交点为C,点P为抛物线对称轴上的一点,连接PA,PC,设点P的纵坐标为m,当PA=PC时,求m的值;
(3)将线段AB先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN,若抛物线y=a(﹣x2+2x+3)(a≠0)与线段MN只有一个交点,请直接写出a的取值范围.
26.(10分)已知∠MON=α,点A,B分别在射线OM,ON上运动,AB=6.
(1)如图①,若α=90°,取AB中点D,点A,B运动时,点D也随之运动,点A,B,D的对应点分别为A′,B′,D′,连接OD,OD′.判断OD与OD′有什么数量关系?证明你的结论;
(2)如图②,若α=60°,以AB为斜边在其右侧作等腰直角三角形ABC,求点O与点C的最大距离;
(3)如图③,若α=45°,当点A,B运动到什么位置时,△AOB的面积最大?请说明理由,并求出△AOB面积的最大值.
2022年广西北部湾经济区中考数学试卷
参考答案与试题解析
一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)
1.(3分)﹣的相反数是( )
A. B.﹣ C.3 D.﹣3
【解答】解:﹣的相反数是.
故选:A.
2.(3分)2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神.下列的四个图中,能由如图所示的会徽经过平移得到的是( )
A. B. C. D.
【解答】解:根据平移的性质可知:能由如图经过平移得到的是D,
故选:D.
3.(3分)空气由多种气体混合而成,为了直观介绍空气中各成分的百分比,最适合使用的统计图是( )
A.条形图 B.折线图 C.扇形图 D.直方图
【解答】解:根据题意,得
要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.
故选:C.
4.(3分)如图,数轴上的点A表示的数是﹣1,则点A关于原点对称的点表示的数是( )
A.﹣2 B.0 C.1 D.2
【解答】解:∵关于原点对称的数是互为相反数,
又∵1和﹣1是互为相反数,
故选:C.
5.(3分)不等式2x﹣4<10的解集是( )
A.x<3 B.x<7 C.x>3 D.x>7
【解答】解:2x﹣4<10,
移项,得:2x<10+4,
合并同类项,得:2x<14,
系数化为1,得:x<7,
故选:B.
6.(3分)如图,直线a∥b,∠1=55°,则∠2的度数是( )
A.35° B.45° C.55° D.125°
【解答】解:如图,∵a∥b,
∴∠3=∠1=55°,
∴∠2=∠3=55°.
故选:C.
7.(3分)下列事件是必然事件的是( )
A.三角形内角和是180°
B.端午节赛龙舟,红队获得冠军
C.掷一枚均匀骰子,点数是6的一面朝上
D.打开电视,正在播放神舟十四号载人飞船发射实况
【解答】解:A、三角形内角和是180°,是必然事件,故A符合题意;
B、端午节赛龙舟,红队获得冠军,是随机事件,故B不符合题意;
C、掷一枚均匀骰子,点数是6的一面朝上,是随机事件,故C不符合题意;
D、打开电视,正在播放神舟十四号载人飞船发射实况,是随机事件,故D不符合题意;
故选:A.
8.(3分)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC是( )
A.12sinα米 B.12cosα米 C.米 D.米
【解答】解:Rt△ABC中,sinα=,
∵AB=12,
∴BC=12sinα.
故选:A.
9.(3分)下列运算正确的是( )
A.a+a2=a3 B.a•a2=a3 C.a6÷a2=a3 D.(a﹣1)3=a3
【解答】解:∵a与a2不是同类项,
∴选项A不符合题意;
∵a•a2=a3,
∴选项B符合题意;
∵a6÷a2=a4,
∴选项C不符合题意;
∵(a﹣1)3=()3=,
∴选项D不符合题意,
故选:B.
10.(3分)《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边衬的宽度应是多少米?设边衬的宽度为x米,根据题意可列方程( )
A.= B.=
C.= D.=
【解答】解:由题意可得,
,
故选:D.
11.(3分)如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是( )
A.π B.π C.π D.π
【解答】解:根据题意可得,
AC′∥B′D,
∵B′D⊥AB,
∴∠C′AD=∠C′AB′+∠B′AB=90°,
∵∠C′AD=α,
∴α+2α=90°,
∴α=30°,
∵AC=4,
∴AD=AC•cos30°=4×=2,
∴,
∴的长度l==.
故选:B.
12.(3分)已知反比例函数y=(b≠0)的图象如图所示,则一次函数y=cx﹣a(c≠0)和二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是( )
A. B.
C. D.
【解答】解:∵反比例函数y=(b≠0)的图象位于一、三象限,
∴b>0;
∵A、B的抛物线都是开口向下,
∴a<0,根据同左异右,对称轴应该在y轴的右侧,
故A、B都是错误的.
∵C、D的抛物线都是开口向上,
∴a>0,根据同左异右,对称轴应该在y轴的左侧,
∵抛物线与y轴交于负半轴,
∴c<0
由a>0,c<0,排除C.
故选:D.
二、填空题(本大题共6小题,每小题2分,共12分.)
13.(2分)化简:= 2 .
【解答】解:===2.
故答案为:2.
14.(2分)当x= 0 时,分式的值为零.
【解答】解:由题意得:
2x=0且x+2≠0,
∴x=0且x≠﹣2,
∴当x=0时,分式的值为零,
故答案为:0.
15.(2分)如图,一个质地均匀的正五边形转盘,指针的位置固定,当转盘自由转动停止后,观察指针指向区域内的数(若指针正好指向分界线,则重新转一次),这个数是一个奇数的概率是 .
【解答】解:由图可知,
指针指向的区域有5种可能性,其中指向的区域是奇数的可能性有3种,
∴这个数是一个奇数的概率是,
故答案为:.
16.(2分)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是 134 米.
【解答】解:据相同时刻的物高与影长成比例,
设金字塔的高度BO为x米,则可列比例为,,
解得:x=134,
答:金字塔的高度BO是134米,
故答案为:134.
17.(2分)阅读材料:整体代值是数学中常用的方法.例如“已知3a﹣b=2,求代数式6a﹣2b﹣1的值.”可以这样解:6a﹣2b﹣1=2(3a﹣b)﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x=2是关于x的一元一次方程ax+b=3的解,则代数式4a2+4ab+b2+4a+2b﹣1的值是 14 .
【解答】解:∵x=2是关于x的一元一次方程ax+b=3的解,
∴2a+b=3,
∴b=3﹣2a,
∴4a2+4ab+b2+4a+2b﹣1
=4a2+4a(3﹣2a)+(3﹣2a)2+4a+2(3﹣2a)﹣1
=4a2+12a﹣8a2+9﹣12a+4a2+4a+6﹣4a﹣1
=14.
故答案为:14.
18.(2分)如图,在正方形ABCD中,AB=4,对角线AC,BD相交于点O.点E是对角线AC上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F为CD的中点,则△EGH′的周长是 5+ .
【解答】解:如图,过点E作EM⊥BC于M,作EN⊥CD于N,过点F作FP⊥AC于P,连接GH,
∵将△EFH沿EF翻折得到△EFH′,
∴△EGH'≌△EGH,
∵四边形ABCD是正方形,
∴AB=CD=BC=4,∠BCD=90°,∠ACD=∠ACB=45°,
∴BD=BC=8,△CPF是等腰直角三角形,
∵F是CD的中点,
∴CF=CD=2,
∴CP=PF=2,OB=BD=4,
∵∠ACD=∠ACB,EM⊥BC,EN⊥CD,
∴EM=EN,∠EMC=∠ENC=∠BCD=90°,
∴∠MEN=90°,
∵EF⊥BE,
∴∠BEF=90°,
∴∠BEM=∠FEN,
∵∠BME=∠FNE,
∴△BME≌△FNE(ASA),
∴EB=EF,
∵∠BEO+∠PEF=∠PEF+∠EFP=90°,
∴∠BEO=∠EFP,
∵∠BOE=∠EPF=90°,
∴△BEO≌△EFP(AAS),
∴OE=PF=2,OB=EP=4,
∵tan∠OEG==,即=,
∴OG=1,
∴EG==,
∵OB∥FP,
∴∠OBH=∠PFH,
∴tan∠OBH=tan∠PFH,
∴=,
∴==2,
∴OH=2PH,
∵OP=OC﹣PC=4﹣2=2,
∴OH=×2=,
在Rt△OGH中,由勾股定理得:GH==,
∴△EGH′的周长=△EGH的周长=EH+EG+GH=2+++=5+.
故答案为:5+.
三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)
19.(6分)计算:(﹣1+2)×3+22÷(﹣4).
【解答】解:原式=1×3+4÷(﹣4)
=3﹣1
=2.
20.(6分)先化简,再求值:(x+y)(x﹣y)+(xy2﹣2xy)÷x,其中x=1,y=.
【解答】解:(x+y)(x﹣y)+(xy2﹣2xy)÷x
=x2﹣y2+y2﹣2y
=x2﹣2y,
当x=1,y=时,原式=12﹣2×=0.
21.(10分)如图,在▱ABCD中,BD是它的一条对角线.
(1)求证:△ABD≌△CDB;
(2)尺规作图:作BD的垂直平分线EF,分别交AD,BC于点E,F(不写作法,保留作图痕迹);
(3)连接BE,若∠DBE=25°,求∠AEB的度数.
【解答】(1)证明:如图1,
∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,
∵BD=BD,
∴△ABD≌△CDB(SSS);
(2)如图所示,
(3)解:如图3,
∵EF垂直平分BD,∠DBE=25°,
∴EB=ED,
∴∠DBE=∠BDE=25°,
∵∠AEB是△BED的外角,
∴∠AEB=∠DBE+∠BDE=25°+25°=50°.
22.(10分)综合与实践
【问题情境】数学活动课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动.
【实践发现】同学们随机收集芒果树、荔枝树的树叶各1片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据后,分别计算长宽比,整理数据如下:
1
2
3
4
5
6
7
8
9
10
芒果树叶的长宽比
3.8
3.7
3.5
3.4
3.8
4.0
3.6
4.0
3.6
4.0
荔枝树叶的长宽比
2.0
2.0
20
2.4
1.8
19
1.8
2.0
1.3
1.9
【实践探究】分析数据如下:
平均数
中位数
众数
方差
芒果树叶的长宽比
3.74
m
4.0
0.0424
荔枝树叶的长宽比
1.91
2.0
n
0.0669
【问题解决】
(1)上述表格中:m= 3.75 ,n= 2.0 ;
(2)①A同学说:“从树叶的长宽比的方差来看,我认为芒果树叶的形状差别大.”
②B同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的两倍.”
上面两位同学的说法中,合理的是 B (填序号);
(3)现有一片长11cm,宽5.6cm的树叶,请判断这片树叶更可能来自于芒果、荔枝中的哪种树?并给出你的理由.
【解答】解:(1)把10片芒果树叶的长宽比从小到大排列,排在中间的两个数分别为3.7、3.8,故m==3.75;
10片荔枝树叶的长宽比中出现次数最多的是2.0,故n=2.0;
故答案为:3.75;2.0;
(2)∵0.0424<0.0669,
∴芒果树叶的形状差别小,故A同学说法不合理;
∵荔枝树叶的长宽比的平均数1.91,中位数是2.0,众数是2.0,
∴B同学说法合理.
故答案为:B;
(3)∵一片长11cm,宽5.6cm的树叶,长宽比接近2,
∴这片树叶更可能来自荔枝.
23.(10分)打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.
(1)求y与x的函数解析式,并写出自变量x的取值范围;
(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.
【解答】解:(1)设函数解析式为y=kx+b,由题意得:
,
解得:,
∴y=﹣5x+500,
当y=0时,﹣5x+500=0,
∴x=100,
∴y与x之间的函数关系式为y=﹣5x+500(50<x<100);
(2)设销售利润为w元,
w=(x﹣50)(﹣5x+500)=﹣5x2+750x﹣25000=﹣5(x﹣75)2+3125,
∵抛物线开口向下,
∴50<x<100,
∴当x=75时,w有最大值,是3125,
∴当销售单价定为75元时,该种油茶的月销售利润最大,最大利润是3125元.
24.(10分)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.
(1)求证:DE是⊙O的切线;
(2)若=,AF=10,求⊙O的半径.
【解答】(1)证明:如图1,
连接OD,则OD=OC,
∴∠ODC=∠OCD,
∵AB=AC,
∴∠B=∠OCD,
∴∠B=∠ODC,
∴OD∥AB,
∵DE⊥AB,
∴OD⊥DE,
∵OD为⊙O的半径,
∴DE是⊙O的切线;
(2)解:如图2,连接AD,
∵=,
∴设AE=2m,DE=3m,
∵DE⊥AB,
∴∠AED=∠BED=90°,
在Rt△ADE中,根据勾股定理得,AD==m,
∵AC为直径,
∴∠ADB=∠ADC=90°=∠AED,
∴∠A=∠A,
∴△ABD∽△ADE,
∴=,
∴,
∴AB=m,BD=m,
∵AB=AC,∠ADC=90°,
∴DC=m,BC=2BD=3m,
连接AF,则∠ADB=∠F,
∵∠B=∠B,
∴△ADB∽△CFB,
∴,
∵AF=10,
∴BF=AB+AF=m+10,
∴,
∴m=4,
∴AD=4,CD=6,
在Rt△ADC中,根据勾股定理得,AC==26,
∴⊙O的半径为AC=13.
25.(10分)已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧).
(1)求点A,点B的坐标;
(2)如图,过点A的直线l:y=﹣x﹣1与抛物线的另一个交点为C,点P为抛物线对称轴上的一点,连接PA,PC,设点P的纵坐标为m,当PA=PC时,求m的值;
(3)将线段AB先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN,若抛物线y=a(﹣x2+2x+3)(a≠0)与线段MN只有一个交点,请直接写出a的取值范围.
【解答】解:(1)当y=0时,﹣x2+2x+3=0,
∴x1=﹣1,x2=3,
∴A (﹣1,0),B(3,0);
(2)∵抛物线对称轴为:x==1,
∴设P(1,m),
由﹣x2+2x+3=﹣x﹣1得,
x3=﹣1(舍去),x4=4,
当x=4时,y=﹣4﹣1=﹣5,
∴C(4,﹣5),
由PA2=PC2得,
22+m2=(4﹣1)2+(m+5)2,
∴m=﹣3;
(3)可得M(0,5),N(4,5),
当a>0时,
∵y=﹣a(x﹣1)2+4a,
∴抛物线的顶点为:(1,4a),
∴,
∴a≥,
当a<0时,
(﹣16+8+3)a≥5,
∴a≤﹣1,
综上所述:a≥或a≤﹣1.
26.(10分)已知∠MON=α,点A,B分别在射线OM,ON上运动,AB=6.
(1)如图①,若α=90°,取AB中点D,点A,B运动时,点D也随之运动,点A,B,D的对应点分别为A′,B′,D′,连接OD,OD′.判断OD与OD′有什么数量关系?证明你的结论;
(2)如图②,若α=60°,以AB为斜边在其右侧作等腰直角三角形ABC,求点O与点C的最大距离;
(3)如图③,若α=45°,当点A,B运动到什么位置时,△AOB的面积最大?请说明理由,并求出△AOB面积的最大值.
【解答】解:(1)OD=OD′,理由如下:
在Rt△AOB中,点D是AB的中点,
∴OD=,
同理可得:OD′=,
∵AB=A′B′,
∴OD=OD′;
(2)如图1,
作△AOB的外接圆I,连接CI并延长,分别交⊙I于O′和D,
当O运动到O′时,OC最大,
此时△AOB是等边三角形,
∴BO′=AB=6,
OC最大=CO′=CD+DO′=+BO′=3+3;
(3)如图2,
作等腰直角三角形AIB,以I为圆心,AI为半径作⊙I,
∴AI==3,∠AOB=,
则点O在⊙I上,取AB的中点C,连接CI并延长交⊙I于O,
此时△AOB的面积最大,
∵OC=CI+OI=AB+3=3+3,
∴S△AOB最大==9+9.
2021年广西北部湾经济区中考数学试卷: 这是一份2021年广西北部湾经济区中考数学试卷,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年广西北部湾经济区中考数学试卷: 这是一份2022年广西北部湾经济区中考数学试卷,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年广西北部湾经济区中考数学试卷(含解析): 这是一份2022年广西北部湾经济区中考数学试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。