|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年湖北省宜昌市点军区天问校初中数学毕业考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    2021-2022学年湖北省宜昌市点军区天问校初中数学毕业考试模拟冲刺卷含解析01
    2021-2022学年湖北省宜昌市点军区天问校初中数学毕业考试模拟冲刺卷含解析02
    2021-2022学年湖北省宜昌市点军区天问校初中数学毕业考试模拟冲刺卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年湖北省宜昌市点军区天问校初中数学毕业考试模拟冲刺卷含解析

    展开
    这是一份2021-2022学年湖北省宜昌市点军区天问校初中数学毕业考试模拟冲刺卷含解析,共23页。试卷主要包含了图中三视图对应的正三棱柱是,方程的解为,如图,双曲线y=,如下图所示,该几何体的俯视图是,若,则等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为( )
    A.0.555×104 B.5.55×103 C.5.55×104 D.55.5×103
    2.如图是二次函数y=ax2+bx+c的图象,有下列结论:①ac<1;②a+b<1;③4ac>b2;④4a+2b+c<1.其中正确的个数是(  )

    A.1个 B.2个 C.3个 D.4个
    3.图中三视图对应的正三棱柱是( )

    A. B. C. D.
    4.方程的解为(  )
    A.x=4 B.x=﹣3 C.x=6 D.此方程无解
    5.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中点,G是△ABC的重心,如果以点D为圆心DG为半径的圆和以点C为圆心半径为r的圆相交,那么r的取值范围是(  )
    A.r<5 B.r>5 C.r<10 D.5<r<10
    6.随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是(  )

    A.①的收入去年和前年相同
    B.③的收入所占比例前年的比去年的大
    C.去年②的收入为2.8万
    D.前年年收入不止①②③三种农作物的收入
    7.如图,双曲线y=(k>0)经过矩形OABC的边BC的中点E,交AB于点D,若四边形ODBC的面积为3,则k的值为( )

    A.1 B.2 C.3 D.6
    8.△ABC在正方形网格中的位置如图所示,则cosB的值为( )

    A. B. C. D.2
    9.如下图所示,该几何体的俯视图是 ( )

    A. B. C. D.
    10.若,则( )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.

    12.如图,在△ABC中,AD、BE分别是边BC、AC上的中线,AB=AC=5,cos∠C=,那么GE=_______.

    13.某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标
    价为___________元.
    14.如图,在梯形ABCD中,AB∥CD,∠C=90°,BC=CD=4,AD=2 ,若,
    用、表示=_____.

    15.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.
    16.如图,在平行四边ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是 (把所有正确结论的序号都填在横线上)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF

    三、解答题(共8题,共72分)
    17.(8分)现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有1、2、3、4这4个数,另一个纸箱内4个小球上分别写有5、6、7、8这4个数,甲、乙两人商定了一个游戏,规则是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上的数字相乘,若得到的积是2的倍数,则甲得1分,若得到积是3的倍数,则乙得2分.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.。
    (1)请你通过列表(或树状图)分别计算乘积是2的倍数和3的倍数的概率;
    (2)你认为这个游戏公平吗?为什么?若你认为不公平,请你修改得分规则,使游戏对双方公平.
    18.(8分)计算:|﹣|﹣﹣(2﹣π)0+2cos45°. 解方程: =1﹣
    19.(8分)有这样一个问题:探究函数的图象与性质.小怀根据学习函数的经验,对函数的图象与性质进行了探究.下面是小怀的探究过程,请补充完成:
    (1)函数的自变量x的取值范围是   ;
    (2)列出y与x的几组对应值.请直接写出m的值,m=   ;
    (3)请在平面直角坐标系xOy中,描出表中各对对应值为坐标的点,并画出该函数的图象;
    (4)结合函数的图象,写出函数的一条性质.


    20.(8分)如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD于E,且DB=DA.求证:AE=CD.

    21.(8分)如图,在△ABC中,BD平分∠ABC,AE⊥BD于点O,交BC于点E,AD∥BC,连接CD.
    (1)求证:AO=EO;
    (2)若AE是△ABC的中线,则四边形AECD是什么特殊四边形?证明你的结论.

    22.(10分)已知抛物线y=﹣x2﹣4x+c经过点A(2,0).
    (1)求抛物线的解析式和顶点坐标;
    (2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.
    ①若B、C都在抛物线上,求m的值;
    ②若点C在第四象限,当AC2的值最小时,求m的值.
    23.(12分)在平面直角坐标系xOy中有不重合的两个点与.若Q、P为某个直角三角形的两个锐角顶点,当该直角三角形的两条直角边分别与x轴或y轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q与点P之间的“直距”记做,特别地,当PQ与某条坐标轴平行(或重合)时,线段PQ的长即为点Q与点P之间的“直距”.例如下图中,点,点,此时点Q与点P之间的“直距”.
    (1)①已知O为坐标原点,点,,则_________,_________;
    ②点C在直线上,求出的最小值;
    (2)点E是以原点O为圆心,1为半径的圆上的一个动点,点F是直线上一动点.直接写出点E与点F之间“直距”的最小值.

    24.如图,AB为⊙O的直径,点E在⊙O,C为弧BE的中点,过点C作直线CD⊥AE于D,连接AC、BC.试判断直线CD与⊙O的位置关系,并说明理由若AD=2,AC=,求⊙O的半径.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:5550=5.55×1.
    故选B.
    【点睛】
    本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    2、C
    【解析】
    由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.
    【详解】
    解:①根据图示知,该函数图象的开口向上,∴a>1;该函数图象交于y轴的负半轴,
    ∴c<1;故①正确;
    ②对称轴
    ∴ ∴b<1;
    故②正确;
    ③根据图示知,二次函数与x轴有两个交点,所以,即,故③错误
    ④故本选项正确.
    正确的有3项
    故选C.
    【点睛】
    本题考查二次函数的图象与系数的关系.二次项系数决定了开口方向,一次项系数和二次项系数共同决定了对称轴的位置,常数项决定了与轴的交点位置.
    3、A
    【解析】
    由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,从而求解
    【详解】
    解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.
    故选A.
    【点睛】
    本题考查由三视图判断几何体,掌握几何体的三视图是本题的解题关键.
    4、C
    【解析】
    先把分式方程化为整式方程,求出x的值,代入最简公分母进行检验.
    【详解】
    方程两边同时乘以x-2得到1-(x-2)=﹣3,解得x=6.将x=6代入x-2得6-2=4,∴x=6就是原方程的解.故选C
    【点睛】
    本题考查的是解分式方程,熟知解分式方程的基本步骤是解答此题的关键.
    5、D
    【解析】
    延长CD交⊙D于点E,
    ∵∠ACB=90°,AC=12,BC=9,∴AB==15,
    ∵D是AB中点,∴CD=,
    ∵G是△ABC的重心,∴CG==5,DG=2.5,
    ∴CE=CD+DE=CD+DF=10,
    ∵⊙C与⊙D相交,⊙C的半径为r,
    ∴ ,
    故选D.

    【点睛】本题考查了三角形的重心的性质、直角三角形斜边中线等于斜边一半、两圆相交等,根据知求出CG的长是解题的关键.
    6、C
    【解析】
    A、前年①的收入为60000×=19500,去年①的收入为80000×=26000,此选项错误;
    B、前年③的收入所占比例为×100%=30%,去年③的收入所占比例为×100%=32.5%,此选项错误;
    C、去年②的收入为80000×=28000=2.8(万元),此选项正确;
    D、前年年收入即为①②③三种农作物的收入,此选项错误,
    故选C.
    【点睛】
    本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.
    7、B
    【解析】
    先根据矩形的特点设出B、C的坐标,根据矩形的面积求出B点横纵坐标的积,由D为AB的中点求出D点的横纵坐标,再由待定系数法即可求出反比例函数的解析式.
    【详解】

    解:如图:连接OE,设此反比例函数的解析式为y=(k>0),C(c,0),
    则B(c,b),E(c, ),
    设D(x,y),
    ∵D和E都在反比例函数图象上,
    ∴xy=k,
    即 ,
    ∵四边形ODBC的面积为3,


    ∴bc=4

    ∵k>0
    ∴ 解得k=2,
    故答案为:B.
    【点睛】
    本题考查了反比例函数中比例系数k的几何意义,涉及到矩形的性质及用待定系数法求反比例函数的解析式,难度适中.
    8、A
    【解析】
    解:在直角△ABD中,BD=2,AD=4,则AB=,
    则cosB=.
    故选A.

    9、B
    【解析】
    根据俯视图是从上面看到的图形解答即可.
    【详解】
    从上面看是三个长方形,故B是该几何体的俯视图.
    故选B.
    【点睛】
    本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
    10、D
    【解析】
    等式左边为非负数,说明右边,由此可得b的取值范围.
    【详解】
    解:,
    ,解得
    故选D.
    【点睛】
    本题考查了二次根式的性质:,.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、4π
    【解析】
    根据圆内接四边形对角互补可得∠BCD+∠A=180°,再根据同弧所对的圆周角与圆心角的关系以及∠BOD=∠BCD,可求得∠A=60°,从而得∠BOD=120°,再利用弧长公式进行计算即可得.
    【详解】
    解:∵四边形ABCD内接于⊙O,
    ∴∠BCD+∠A=180°,
    ∵∠BOD=2∠A,∠BOD=∠BCD,
    ∴2∠A+∠A=180°,
    解得:∠A=60°,
    ∴∠BOD=120°,
    ∴的长=,
    故答案为4π.
    【点睛】
    本题考查了圆周角定理、弧长公式等,求得∠A的度数是解题的关键.
    12、
    【解析】
    过点E作EF⊥BC交BC于点F,分别求得AD=3,BD=CD=4,EF=,DF=2,BF=6,再结合△BGD∽△BEF即可.
    【详解】

    过点E作EF⊥BC交BC于点F.
    ∵AB=AC, AD为BC的中线 ∴AD⊥BC ∴EF为△ADC的中位线.
    又∵cos∠C=,AB=AC=5,∴AD=3,BD=CD=4,EF=,DF=2
    ∴BF=6
    ∴在Rt△BEF中BE==,
    又∵△BGD∽△BEF
    ∴,即BG=.
    GE=BE-BG=
    故答案为.
    【点睛】
    本题考查的知识点是三角形的相似,解题的关键是熟练的掌握三角形的相似.
    13、28
    【解析】
    设标价为x元,那么0.9x-21=21×20%,x=28.
    14、
    【解析】
    过点A作AE⊥DC,利用向量知识解题.
    【详解】
    解:过点A作AE⊥DC于E,
    ∵AE⊥DC,BC⊥DC,
    ∴AE∥BC,
    又∵AB∥CD,
    ∴四边形AECB是矩形,
    ∴AB=EC,AE=BC=4,
    ∴DE===2,
    ∴AB=EC=2=DC,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,

    故答案为.
    【点睛】
    向量知识只有使用沪教版(上海)教材的学生才学过,全国绝大部分地区将向量放在高中阶段学习.
    15、3或1.2
    【解析】
    【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.
    【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,
    ∵△PBE∽△DBC,
    ∴∠PBE=∠DBC,∴点P在BD上,
    如图1,当DP=DA=8时,BP=2,
    ∵△PBE∽△DBC,
    ∴PE:CD=PB:DB=2:10,
    ∴PE:6=2:10,
    ∴PE=1.2;

    如图2,当AP=DP时,此时P为BD中点,
    ∵△PBE∽△DBC,
    ∴PE:CD=PB:DB=1:2,
    ∴PE:6=1:2,
    ∴PE=3;

    综上,PE的长为1.2或3,
    故答案为:1.2或3.
    【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.
    16、①②④
    【解析】
    试题解析:①∵F是AD的中点,
    ∴AF=FD,
    ∵在▱ABCD中,AD=2AB,
    ∴AF=FD=CD,
    ∴∠DFC=∠DCF,
    ∵AD∥BC,
    ∴∠DFC=∠FCB,
    ∴∠DCF=∠BCF,
    ∴∠DCF=∠BCD,故此选项正确;
    延长EF,交CD延长线于M,

    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠A=∠MDF,
    ∵F为AD中点,
    ∴AF=FD,
    在△AEF和△DFM中,

    ∴△AEF≌△DMF(ASA),
    ∴FE=MF,∠AEF=∠M,
    ∵CE⊥AB,
    ∴∠AEC=90°,
    ∴∠AEC=∠ECD=90°,
    ∵FM=EF,
    ∴FC=FM,故②正确;
    ③∵EF=FM,
    ∴S△EFC=S△CFM,
    ∵MC>BE,
    ∴S△BEC<2S△EFC
    故S△BEC=2S△CEF错误;
    ④设∠FEC=x,则∠FCE=x,
    ∴∠DCF=∠DFC=90°-x,
    ∴∠EFC=180°-2x,
    ∴∠EFD=90°-x+180°-2x=270°-3x,
    ∵∠AEF=90°-x,
    ∴∠DFE=3∠AEF,故此选项正确.
    考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.直角三角形斜边上的中线.

    三、解答题(共8题,共72分)
    17、(1)

    (2)游戏不公平,修改得分规则为:把两个小球上的数字相乘,若得到的积是2的倍数,则甲得7分,若得到的积是3的倍数,则乙得12分
    【解析】
    试题分析:(1)列表如下:

    共有16种情况,且每种情况出现的可能性相同,其中,乘积是2的倍数的有12种,乘积是3的倍数的有7种.
    ∴P(两数乘积是2的倍数)
    P(两数乘积是3的倍数)
    (2)游戏不公平,修改得分规则为:把两个小球上的数字相乘,若得到的积是2的倍数,则甲得7分,若得到的积是3的倍数,则乙得12分
    考点:概率的计算
    点评:题目难度不大,考查基本概率的计算,属于基础题。本题主要是第二问有点难度,对游戏规则的确定,需要一概率为基础。
    18、(1)﹣1;(2)x=﹣1是原方程的根.
    【解析】
    (1)直接化简二次根式进而利用零指数幂的性质以及特殊角三角函数值进而得出答案;
    (2)直接去分母再解方程得出答案.
    【详解】
    (1)原式=﹣2﹣1+2×
    =﹣﹣1+
    =﹣1;
    (2)去分母得:3x=x﹣3+1,
    解得:x=﹣1,
    检验:当x=﹣1时,x﹣3≠0,
    故x=﹣1是原方程的根.
    【点睛】
    此题主要考查了实数运算和解分式方程,正确掌握解分式方程的方法是解题关键.
    19、(1)x≠﹣1;(2)2;(2)见解析;(4)在x<﹣1和x>﹣1上均单调递增;
    【解析】
    (1)根据分母非零即可得出x+1≠0,解之即可得出自变量x的取值范围;
    (2)将y=代入函数解析式中求出x值即可;
    (2)描点、连线画出函数图象;
    (4)观察函数图象,写出函数的一条性质即可.
    【详解】
    解:(1)∵x+1≠0,∴x≠﹣1.
    故答案为x≠﹣1.
    (2)当y==时,解得:x=2.
    故答案为2.
    (2)描点、连线画出图象如图所示.
    (4)观察函数图象,发现:函数在x<﹣1和x>﹣1上均单调递增.

    【点睛】
    本题考查了反比例函数的性质以及函数图象,根据给定数据描点、连线画出函数图象是解题的关键.
    20、证明见解析.
    【解析】
    由AD∥BC得∠ADB=∠DBC,根据已知证明△AED≌△DCB(AAS),即可解题.
    【详解】
    解:∵AD∥BC
    ∴∠ADB=∠DBC
    ∵DC⊥BC于点C,AE⊥BD于点E
    ∴∠C=∠AED=90°
    又∵DB=DA
    ∴△AED≌△DCB(AAS)
    ∴AE=CD
    【点睛】
    本题考查了三角形全等的判定和性质,属于简单题,证明三角形全等是解题关键.
    21、(1)详见解析;(2)平行四边形.
    【解析】
    (1)由“三线合一”定理即可得到结论;
    (2)由AD∥BC,BD平分∠ABC,得到∠ADB=∠ABD,由等腰三角形的判定得到AD=AB,根据垂直平分线的性质有AB=BE,于是AD=BE,进而得到AD=EC,根据平行四边形的判定即可得到结论.
    【详解】
    证明:(1)∵BD平分∠ABC,AE⊥BD,
    ∴AO=EO;
    (2)平行四边形,
    证明:∵AD∥BC,
    ∴∠ADB=∠ABD,
    ∴AD=AB,
    ∵OA=OE,OB⊥AE,
    ∴AB=BE,
    ∴AD=BE,
    ∵BE=CE,
    ∴AD=EC,
    ∴四边形AECD是平行四边形.

    【点睛】
    考查等腰直角三角形的性质以及平行四边形的判定,掌握平行四边形的判定方法是解题的关键.
    22、(1)抛物线解析式为y=﹣x2﹣4x+12,顶点坐标为(﹣2,16);(2)①m=2或m=﹣2;②m的值为 .
    【解析】
    分析:(1)把点A(2,0)代入抛物线y=﹣x2﹣4x+c中求得c的值,即可得抛物线的解析式,根据抛物线的解析式求得抛物线的顶点坐标即可;(2)①由B(m,n)在抛物线上可得﹣m2﹣4m+12=n,再由点B关于原点的对称点为C,可得点C的坐标为(﹣m,﹣n),又因C落在抛物线上,可得﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,所以﹣m2+4m+12=m2﹣4m﹣12,解方程求得m的值即可;②已知点C(﹣m,﹣n)在第四象限,可得﹣m>0,﹣n<0,即m<0,n>0,再由抛物线顶点坐标为(﹣2,16),即可得0<n≤16,因为点B在抛物线上,所以﹣m2﹣4m+12=n,可得m2+4m=﹣n+12,由A(2,0),C(﹣m,﹣n),可得AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,所以当n=时,AC2有最小值,即﹣m2﹣4m+12=,解方程求得m的值,再由m<0即可确定m的值.
    详解:
    (1)∵抛物线y=﹣x2﹣4x+c经过点A(2,0),
    ∴﹣4﹣8+c=0,即c=12,
    ∴抛物线解析式为y=﹣x2﹣4x+12=﹣(x+2)2+16,
    则顶点坐标为(﹣2,16);
    (2)①由B(m,n)在抛物线上可得:﹣m2﹣4m+12=n,
    ∵点B关于原点的对称点为C,
    ∴C(﹣m,﹣n),
    ∵C落在抛物线上,
    ∴﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,
    解得:﹣m2+4m+12=m2﹣4m﹣12,
    解得:m=2或m=﹣2;
    ②∵点C(﹣m,﹣n)在第四象限,
    ∴﹣m>0,﹣n<0,即m<0,n>0,
    ∵抛物线顶点坐标为(﹣2,16),
    ∴0<n≤16,
    ∵点B在抛物线上,
    ∴﹣m2﹣4m+12=n,
    ∴m2+4m=﹣n+12,
    ∵A(2,0),C(﹣m,﹣n),
    ∴AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,
    当n=时,AC2有最小值,
    ∴﹣m2﹣4m+12=,
    解得:m=,
    ∵m<0,∴m=不合题意,舍去,
    则m的值为.
    点睛:本题是二次函数综合题,第(1)问较为简单,第(2)问根据点B(m,n)关于原点的对称点C(-m,-n)均在二次函数的图象上,代入后即可求出m的值即可;(3)确定出AC2与n之间的函数关系式,利用二次函数的性质求得当n=时,AC2有最小值,在解方程求得m的值即可.
    23、(1)①3,1;②最小值为3;(1)
    【解析】
    (1)①根据点Q与点P之间的“直距”的定义计算即可;
    ②如图3中,由题意,当DCO为定值时,点C的轨迹是以点O为中心的正方形(如左边图),当DCO=3时,该正方形的一边与直线y=-x+3重合(如右边图),此时DCO定值最小,最小值为3;
    (1)如图4中,平移直线y=1x+4,当平移后的直线与⊙O在左边相切时,设切点为E,作EF∥x轴交直线y=1x+4于F,此时DEF定值最小;
    【详解】
    解:(1)①如图1中,

    观察图象可知DAO=1+1=3,DBO=1,
    故答案为3,1.
    ②(i)当点C在第一象限时(),根据题意可知,为定值,设点C坐标为,则,即此时为3;
    (ii)当点C在坐标轴上时(,),易得为3;
    (ⅲ)当点C在第二象限时(),可得;
    (ⅳ)当点C在第四象限时(),可得;
    综上所述,当时,取得最小值为3;
    (1)如解图②,可知点F有两种情形,即过点E分别作y轴、x轴的垂线与直线分别交于、;如解图③,平移直线使平移后的直线与相切,平移后的直线与x轴交于点G,设直线与x轴交于点M,与y轴交于点N,观察图象,此时即为点E与点F之间“直距”的最小值.连接OE,易证,∴,在中由勾股定理得,∴,解得,∴.

    【点睛】
    本题考查一次函数的综合题,点Q与点P之间的“直距”的定义,圆的有关知识,正方形的性质等知识,解题的关键是理解题意,学会利用新的定义,解决问题,属于中考压轴题.
    失分原因
    第(1)问 (1)不能根据定义找出AO、BO的“直距”分属哪种情形;
    (1)不能找出点C在不同位置时, 的取值情况,并找到 的最小值第(1)问 (1)不能根据定义正确找出点E与点F之间“直距” 取最小值时点E、F 的位置;
    (1)不能想到由相似求出GO的值
    24、(1)直线CD与⊙O相切;(2)⊙O的半径为1.1.
    【解析】
    (1)相切,连接OC,∵C为的中点,∴∠1=∠2,∵OA=OC,∴∠1=∠ACO,∴∠2=∠ACO,∴AD∥OC,∵CD⊥AD,∴OC⊥CD,∴直线CD与⊙O相切;
    (2)连接CE,∵AD=2,AC=,∵∠ADC=90°,∴CD==,∵CD是⊙O的切线,∴=AD•DE,∴DE=1,∴CE==,∵C为的中点,∴BC=CE=,∵AB为⊙O的直径,∴∠ACB=90°,∴AB==2.
    ∴半径为1.1


    相关试卷

    湖北省宜昌市点军区天问学校2023-2024学年八年级数学第一学期期末统考模拟试题含答案: 这是一份湖北省宜昌市点军区天问学校2023-2024学年八年级数学第一学期期末统考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列各数中,无理数是等内容,欢迎下载使用。

    湖北省宜昌市点军区天问校2021-2022学年中考联考数学试卷含解析: 这是一份湖北省宜昌市点军区天问校2021-2022学年中考联考数学试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,方程的解为等内容,欢迎下载使用。

    成都青羊区四校联考2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份成都青羊区四校联考2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共22页。试卷主要包含了计算4+等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map