|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年湖南张家界五道水镇中学中考五模数学试题含解析
    立即下载
    加入资料篮
    2021-2022学年湖南张家界五道水镇中学中考五模数学试题含解析01
    2021-2022学年湖南张家界五道水镇中学中考五模数学试题含解析02
    2021-2022学年湖南张家界五道水镇中学中考五模数学试题含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年湖南张家界五道水镇中学中考五模数学试题含解析

    展开
    这是一份2021-2022学年湖南张家界五道水镇中学中考五模数学试题含解析,共21页。试卷主要包含了已知一次函数y=等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为(  )
    A.7.1×107 B.0.71×10﹣6 C.7.1×10﹣7 D.71×10﹣8
    2.如图,一张半径为的圆形纸片在边长为的正方形内任意移动,则在该正方形内,这张圆形纸片“能接触到的部分”的面积是( )

    A. B. C. D.
    3.去年12月24日全国大约有1230000人参加研究生招生考试,1230000这个数用科学记数法表示为(  )
    A.1.23×106 B.1.23×107 C.0.123×107 D.12.3×105
    4.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是(  )
    A.y=(x﹣2)2+1 B.y=(x+2)2+1
    C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3
    5.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是(  )

    A. B. C. D.
    6.已知一次函数y=(k﹣2)x+k不经过第三象限,则k的取值范围是(  )
    A.k≠2 B.k>2 C.0<k<2 D.0≤k<2
    7.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需(  )
    A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元
    8.如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分别是(  )

    A.(﹣2,4),(1,3) B.(﹣2,4),(2,3)
    C.(﹣3,4),(1,4) D.(﹣3,4),(1,3)
    9.某校九年级一班全体学生2017年中招理化生实验操作考试的成绩统计如下表,根据表中的信息判断,下列结论中错误的是( )
    成绩(分)
    30
    29
    28
    26
    18
    人数(人)
    32
    4
    2
    1
    1
    A.该班共有40名学生
    B.该班学生这次考试成绩的平均数为29.4分
    C.该班学生这次考试成绩的众数为30分
    D.该班学生这次考试成绩的中位数为28分
    10.一个多边形的内角和比它的外角和的倍少180°,那么这个多边形的边数是( )
    A.7 B.8 C.9 D.10
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.在平面直角坐标系中,将点A(﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.
    12.某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为_____人.

    13.若函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而减小,则m的取值范围是_____.
    14.如图,直线交于点,,与轴负半轴,轴正半轴分别交于点,,,的延长线相交于点,则的值是_________.

    15.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=_____.
    16.将多项式因式分解的结果是 .
    三、解答题(共8题,共72分)
    17.(8分)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G、F两点.

    (1)求证:AB与⊙O相切;
    (2)若等边三角形ABC的边长是4,求线段BF的长?
    18.(8分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F
    (1)证明:PC=PE;
    (2)求∠CPE的度数;
    (3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.

    19.(8分)如图,菱形中,分别是边的中点.求证:.

    20.(8分)已知正方形ABCD的边长为2,作正方形AEFG(A,E,F,G四个顶点按逆时针方向排列),连接BE、GD,
    (1)如图①,当点E在正方形ABCD外时,线段BE与线段DG有何关系?直接写出结论;
    (2)如图②,当点E在线段BD的延长线上,射线BA与线段DG交于点M,且DG=2DM时,求边AG的长;
    (3)如图③,当点E在正方形ABCD的边CD所在的直线上,直线AB与直线DG交于点M,且DG=4DM时,直接写出边AG的长.

    21.(8分)如图,四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,E为AB的中点.
    (1)求证:△ADC∽△ACB;
    (2)CE与AD有怎样的位置关系?试说明理由;
    (3)若AD=4,AB=6,求的值.

    22.(10分)铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:求y与x之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?

    23.(12分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD=8,AC=9,sinC=,求⊙O的半径.

    24.如图,已知抛物线(>0)与轴交于A,B两点(A点在B点的左边),与轴交于点C。
    (1)如图1,若△ABC为直角三角形,求的值;
    (2)如图1,在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B,C,P,Q为顶点的四边形是平行四边形,求P点的坐标;
    (3)如图2,过点A作直线BC的平行线交抛物线于另一点D,交轴交于点E,若AE:ED=1:4,求的值.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    0.00000071的小数点向或移动7位得到7.1,
    所以0.00000071用科学记数法表示为7.1×10﹣7,
    故选C.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    2、C
    【解析】
    这张圆形纸片减去“不能接触到的部分”的面积是就是这张圆形纸片“能接触到的部分”的面积.
    【详解】
    解:如图:

    ∵正方形的面积是:4×4=16;
    扇形BAO的面积是:,
    ∴则这张圆形纸片“不能接触到的部分”的面积是4×1-4×=4-π,
    ∴这张圆形纸片“能接触到的部分”的面积是16-(4-π)=12+π,
    故选C.
    【点睛】
    本题主要考查了正方形和扇形的面积的计算公式,正确记忆公式是解题的关键.
    3、A
    【解析】
    分析:科学记数法的表示形式为的形式,其中为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.
    详解:1230000这个数用科学记数法可以表示为
    故选A.
    点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.
    4、C
    【解析】
    试题分析:根据顶点式,即A、C两个选项的对称轴都为,再将(0,1)代入,符合的式子为C选项
    考点:二次函数的顶点式、对称轴
    点评:本题考查学生对二次函数顶点式的掌握,难度较小,二次函数的顶点式解析式为,顶点坐标为,对称轴为
    5、B
    【解析】
    根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形.
    【详解】
    从上面看,是正方形右边有一条斜线,如图:

    故选B.
    【点睛】
    考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.
    6、D
    【解析】
    直线不经过第三象限,则经过第二、四象限或第一、二、四象限,当经过第二、四象限时,函数为正比例函数,k=0
    当经过第一、二、四象限时, ,解得0 综上所述,0≤k<2。故选D
    7、C
    【解析】
    用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
    【详解】
    买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,
    共用去:(2a+3b)元.
    故选C.
    【点睛】
    本题主要考查列代数式,总价=单价乘数量.
    8、A
    【解析】
    作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,由AAS证明△AOE≌△OCD,得出AE=OD,OE=CD,由点A的坐标是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.
    【详解】
    解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,则∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.
    ∵四边形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.
    ∵点A的坐标是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).
    同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).
    故选A.

    【点睛】
    本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.
    9、D
    【解析】
    A.∵32+4+2+1+1=40(人),故A正确;
    B. ∵(30×32+29×4+28×2+26+18)÷40=29.4(分),故B正确;
    C. ∵成绩是30分的人有32人,最多,故C 正确;
    D. 该班学生这次考试成绩的中位数为30分,故D错误;
    10、A
    【解析】
    设这个正多边形的边数是n,就得到方程,从而求出边数,即可求出答案.
    【详解】
    设这个多边形的边数为n,依题意得:
    180(n-2)=360×3-180,
    解之得
    n=7.
    故选A.
    【点睛】
    本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和与外角和,根据题目中的等量关系,构建方程求解即可.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、(0,0)
    【解析】
    根据坐标的平移规律解答即可.
    【详解】
    将点A(-3,2)向右平移3个单位长度,再向下平移2个单位长度,
    那么平移后对应的点A′的坐标是(-3+3,2-2),即(0,0),
    故答案为(0,0).
    【点睛】
    此题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
    12、16000
    【解析】
    用毕业生总人数乘以“综合素质”等级为A的学生所占的比即可求得结果.
    【详解】
    ∵A,B,C,D,E五个等级在统计图中的高之比为2:3:3:1:1,
    ∴该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为80000×=16000,
    故答案为16000.
    【点睛】
    本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
    13、m>2
    【解析】
    试题分析:有函数的图象在其所在的每一象限内,函数值y随自变量x的增大而减小可得m-2>0,解得m>2,
    考点:反比例函数的性质.
    14、
    【解析】
    连接,根据可得,并且根据圆的半径相等可得△OAD、△OBE都是等腰三角形,由三角形的内角和,可得∠C=45°,则有是等腰直角三角形,可得
    即可求求解.
    【详解】
    解:如图示,连接,

    ∵,
    ∴,
    ∵,,
    ∴,,
    ∴,
    ∴,
    ∵是直径,
    ∴,
    ∴是等腰直角三角形,
    ∴.
    【点睛】
    本题考查圆的性质和直角三角形的性质,能够根据圆性质得出是等腰直角三角形是解题的关键.
    15、﹣1
    【解析】
    根据一元二次方程的解的定义把x=1代入x1+mx+1n=0得到4+1m+1n=0得n+m=−1,然后利用整体代入的方法进行计算.
    【详解】
    ∵1(n≠0)是关于x的一元二次方程x1+mx+1n=0的一个根,
    ∴4+1m+1n=0,
    ∴n+m=−1,
    故答案为−1.
    【点睛】
    本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
    16、m(m+n)(m﹣n).
    【解析】
    试题分析:原式==m(m+n)(m﹣n).故答案为:m(m+n)(m﹣n).
    考点:提公因式法与公式法的综合运用.

    三、解答题(共8题,共72分)
    17、(2)证明见试题解析;(2).
    【解析】
    (2)过点O作OM⊥AB于M,证明OM=圆的半径OD即可;
    (2)过点O作ON⊥BE,垂足是N,连接OF,得到四边形OMBN是矩形,在直角△OBM中利用三角函数求得OM和BM的长,进而求得BN和ON的长,在直角△ONF中利用勾股定理求得NF,则BF即可求解.
    【详解】
    解:(2)过点O作OM⊥AB,垂足是M.
    ∵⊙O与AC相切于点D,
    ∴OD⊥AC,
    ∴∠ADO=∠AMO=90°.
    ∵△ABC是等边三角形,
    ∴∠DAO=∠MAO,
    ∴OM=OD,
    ∴AB与⊙O相切;
    (2)过点O作ON⊥BE,垂足是N,连接OF.
    ∵O是BC的中点,
    ∴OB=2.在直角△OBM中,∠MBO=60°,
    ∴∠MOB=30°, BM=OB=2,
    OM=BM =,
    ∵BE⊥AB,
    ∴四边形OMBN是矩形,
    ∴ON=BM=2,BN=OM=.
    ∵OF=OM=,由勾股定理得NF=.
    ∴BF=BN+NF=.

    考点:2.切线的判定与性质;2.勾股定理;3.解直角三角形;4.综合题.
    18、(1)证明见解析(2)90°(3)AP=CE
    【解析】
    (1)、根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP ≌△CBP,从而得出结论;(2)、根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先证明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.
    【详解】
    (1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,
    在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS), ∴PA=PC,∵PA=PE,∴PC=PE;
    (2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,
    ∵PA=PE, ∴∠DAP=∠E, ∴∠DCP=∠E, ∵∠CFP=∠EFD(对顶角相等),
    ∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E, 即∠CPF=∠EDF=90°;
    (3)、AP=CE
    理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,
    在△ABP和△CBP中, 又∵ PB=PB ∴△ABP≌△CBP(SAS),
    ∴PA=PC,∠BAP=∠DCP,
    ∵PA=PE,∴PC=PE,∴∠DAP=∠DCP, ∵PA=PC ∴∠DAP=∠E, ∴∠DCP=∠E
    ∵∠CFP=∠EFD(对顶角相等), ∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,
    即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°, ∴△EPC是等边三角形,∴PC=CE,∴AP=CE
    考点:三角形全等的证明
    19、证明见解析.
    【解析】
    根据菱形的性质,先证明△ABE≌△ADF,即可得解.
    【详解】
    在菱形ABCD中,AB=BC=CD=AD,∠B=∠D.
    ∵点E,F分别是BC,CD边的中点,
    ∴BE=BC,DF=CD,
    ∴BE=DF.
    ∴△ABE≌△ADF,
    ∴AE=AF.
    20、(1)结论:BE=DG,BE⊥DG.理由见解析;(1)AG=1;(3)满足条件的AG的长为1或1.
    【解析】
    (1)结论:BE=DG,BE⊥DG.只要证明△BAE≌△DAG(SAS),即可解决问题;
    (1)如图②中,连接EG,作GH⊥AD交DA的延长线于H.由A,D,E,G四点共圆,推出∠ADO=∠AEG=45°,解直角三角形即可解决问题;
    (3)分两种情形分别画出图形即可解决问题;
    【详解】
    (1)结论:BE=DG,BE⊥DG.

    理由:如图①中,设BE交DG于点K,AE交DG于点O.
    ∵四边形ABCD,四边形AEFG都是正方形,
    ∴AB=AD,AE=AG,∠BAD=∠EAG=90°,
    ∴∠BAE=∠DAG,
    ∴△BAE≌△DAG(SAS),
    ∴BE=DG,∴∠AEB=∠AGD,
    ∵∠AOG=∠EOK,
    ∴∠OAG=∠OKE=90°,
    ∴BE⊥DG.
    (1)如图②中,连接EG,作GH⊥AD交DA的延长线于H.

    ∵∠OAG=∠ODE=90°,
    ∴A,D,E,G四点共圆,
    ∴∠ADO=∠AEG=45°,
    ∵∠DAM=90°,
    ∴∠ADM=∠AMD=45°,

    ∵DG=1DM,

    ∵∠H=90°,
    ∴∠HDG=∠HGD=45°,
    ∴GH=DH=4,
    ∴AH=1,
    在Rt△AHG中,
    (3)①如图③中,当点E在CD的延长线上时.作GH⊥DA交DA的延长线于H.

    易证△AHG≌△EDA,可得GH=AB=1,
    ∵DG=4DM.AM∥GH,

    ∴DH=8,
    ∴AH=DH﹣AD=6,
    在Rt△AHG中,
    ②如图3﹣1中,当点E在DC的延长线上时,易证:△AKE≌△GHA,可得AH=EK=BC=1.

    ∵AD∥GH,

    ∵AD=1,
    ∴HG=10,
    在Rt△AGH中,
    综上所述,满足条件的AG的长为或.
    【点睛】
    本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,平行线分线段成比例定理,等腰直角三角形的性质和判定,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
    21、(1)证明见解析;(2)CE∥AD,理由见解析;(3).
    【解析】
    (1)根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的判定定理证明;
    (2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得到CE=AE,根据等腰三角形的性质、平行线的判定定理证明;
    (3)根据相似三角形的性质列出比例式,计算即可.
    【详解】
    解:(1)∵AC平分∠DAB,
    ∴∠DAC=∠CAB,
    又∵AC2=AB•AD,
    ∴AD:AC=AC:AB,
    ∴△ADC∽△ACB;
    (2)CE∥AD,
    理由:∵△ADC∽△ACB,
    ∴∠ACB=∠ADC=90°,
    又∵E为AB的中点,
    ∴∠EAC=∠ECA,
    ∵∠DAC=∠CAE,
    ∴∠DAC=∠ECA,
    ∴CE∥AD;
    (3)∵AD=4,AB=6,CE=AB=AE=3,
    ∵CE∥AD,
    ∴∠FCE=∠DAC,∠CEF=∠ADF,
    ∴△CEF∽△ADF,
    ∴==,
    ∴=.
    22、 (1)y=10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.
    【解析】
    (1)由待定系数法即可得到函数的解析式;
    (2)根据销售量×每千克利润=总利润列出方程求解即可;
    (3)根据销售量×每千克利润=总利润列出函数解析式求解即可.
    【详解】
    (1)设y与x之间的函数关系式为:y=kx+b,
    把(2,120)和(4,140)代入得,,
    解得:,
    ∴y与x之间的函数关系式为:y=10x+100;
    (2)根据题意得,(60﹣40﹣x)(10x+100)=2090,
    解得:x=1或x=9,
    ∵为了让顾客得到更大的实惠,
    ∴x=9,
    答:这种干果每千克应降价9元;
    (3)该干果每千克降价x元,商贸公司获得利润是w元,
    根据题意得,w=(60﹣40﹣x)(10x+100)=﹣10x2+100x+2000,
    ∴w=﹣10(x﹣5)2+2250,
    ∵a=-10,∴当x=5时,
    故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.
    【点睛】
    本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识.
    23、⊙O的半径为.
    【解析】
    如图,连接OA.交BC于H.首先证明OA⊥BC,在Rt△ACH中,求出AH,设⊙O的半径为r,在Rt△BOH中,根据BH2+OH2=OB2,构建方程即可解决问题。
    【详解】
    解:如图,连接OA.交BC于H.

    ∵点A为的中点,
    ∴OA⊥BD,BH=DH=4,
    ∴∠AHC=∠BHO=90°,
    ∵,AC=9,
    ∴AH=3,
    设⊙O的半径为r,
    在Rt△BOH中,∵BH2+OH2=OB2,
    ∴42+(r﹣3)2=r2,
    ∴r=,
    ∴⊙O的半径为.
    【点睛】
    本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
    24、(1);(2)点P的坐标为 ;(3).
    【解析】
    (1)利用三角形相似可求AO•OB,再由一元二次方程根与系数关系求AO•OB构造方程求n;
    (2)求出B、C坐标,设出点Q坐标,利用平行四边形对角线互相平分性质,分类讨论点P坐标,分别代入抛物线解析式,求出Q点坐标;
    (3)设出点D坐标(a,b),利用相似表示OA,再由一元二次方程根与系数关系表示OB,得到点B坐标,进而找到b与a关系,代入抛物线求a、n即可.
    【详解】
    (1)若△ABC为直角三角形
    ∴△AOC∽△COB
    ∴OC2=AO•OB
    当y=0时,0=x2-x-n
    由一元二次方程根与系数关系
    -OA•OB=OC2
    n2==−2n
    解得n=0(舍去)或n=2
    ∴抛物线解析式为y=;
    (2)由(1)当=0时
    解得x1=-1,x2=4
    ∴OA=1,OB=4
    ∴B(4,0),C(0,-2)
    ∵抛物线对称轴为直线x=-=−
    ∴设点Q坐标为(,b)
    由平行四边形性质可知
    当BQ、CP为平行四边形对角线时,点P坐标为(,b+2)
    代入y=x2-x-2
    解得b=,则P点坐标为(,)
    当CQ、PB为为平行四边形对角线时,点P坐标为(-,b-2)
    代入y=x2-x-2
    解得b=,则P坐标为(-,)
    综上点P坐标为(,),(-,);
    (3)设点D坐标为(a,b)
    ∵AE:ED=1:4
    则OE=b,OA=a
    ∵AD∥AB
    ∴△AEO∽△BCO
    ∵OC=n

    ∴OB=
    由一元二次方程根与系数关系得,
    ∴b=a2
    将点A(-a,0),D(a,a2)代入y=x2-x-n

    解得a=6或a=0(舍去)
    则n= .
    【点睛】
    本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.

    相关试卷

    湖南省张家界五道水镇中学2023-2024学年八上数学期末综合测试试题含答案: 这是一份湖南省张家界五道水镇中学2023-2024学年八上数学期末综合测试试题含答案,共8页。试卷主要包含了不等式1+x≥2﹣3x的解是,在中,按一下步骤作图,在平面直角坐标系中,点P等内容,欢迎下载使用。

    湖南张家界五道水镇中学2023-2024学年数学八上期末预测试题含答案: 这是一份湖南张家界五道水镇中学2023-2024学年数学八上期末预测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,满足下列条件的是直角三角形的是等内容,欢迎下载使用。

    2022-2023学年湖南省张家界市五道水镇中学七下数学期末质量跟踪监视试题含答案: 这是一份2022-2023学年湖南省张家界市五道水镇中学七下数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了关于一次函数,下列结论正确的是,函数自变量x的取值范围是,若分式有意义,则x的取值范围是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map