终身会员
搜索
    上传资料 赚现金

    2021-2022学年江苏省南京鼓楼区29中学集团校中考数学对点突破模拟试卷含解析

    立即下载
    加入资料篮
    2021-2022学年江苏省南京鼓楼区29中学集团校中考数学对点突破模拟试卷含解析第1页
    2021-2022学年江苏省南京鼓楼区29中学集团校中考数学对点突破模拟试卷含解析第2页
    2021-2022学年江苏省南京鼓楼区29中学集团校中考数学对点突破模拟试卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江苏省南京鼓楼区29中学集团校中考数学对点突破模拟试卷含解析

    展开

    这是一份2021-2022学年江苏省南京鼓楼区29中学集团校中考数学对点突破模拟试卷含解析,共20页。试卷主要包含了计算﹣2+3的结果是,的算术平方根是,下列各数中是无理数的是等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()

    A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1
    2.如图,△ABC的面积为12,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C处,P为直线AD上的一点,则线段BP的长可能是(  )

    A.3 B.5 C.6 D.10
    3.山西有着悠久的历史,远在100 多万年前就有古人类生息在这块土地上.春秋时期,山西大部分为晋国领地,故山西简称为“晋”,战国初韩、赵、魏三分晋,山西又有“三晋”之称,下面四个以“晋”字为原型的Logo 图案中,是轴对称图形的共有(  )
    A. B. C. D.
    4.已知关于x的一元二次方程mx2+2x-1=0有两个不相等的实数根,则m的取值范围是( ).
    A.m>-1且m≠0 B.m<1且m≠0 C.m<-1 D.m>1
    5.计算﹣2+3的结果是(  )
    A.1 B.﹣1 C.﹣5 D.﹣6
    6.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为万千克,根据题意,列方程为  
    A. B.
    C. D.
    7.的算术平方根是( )
    A.9 B.±9 C.±3 D.3
    8.若关于的一元二次方程有两个不相等的实数根,则的取值范围( )
    A. B. C.且 D.
    9.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点若点D为BC边的中点,点M为线段EF上一动点,则周长的最小值为  

    A.6 B.8 C.10 D.12
    10.下列各数中是无理数的是( )
    A.cos60° B. C.半径为1cm的圆周长 D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.计算(﹣a)3•a2的结果等于_____.
    12.若关于x的一元二次方程有两个不相等的实数根,则k的取值范围是______.
    13.一个多边形的内角和是,则它是______边形.
    14.有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是_____.
    15.抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,1)和(-2,1)之间,其部分图象如图,则以下结论:①b2-4ac<1;②当x>-1时y随x增大而减小;③a+b+c<1;④若方程ax2+bx+c-m=1没有实数根,则m>2; ⑤3a+c<1.其中,正确结论的序号是________________.

    16.如图,在△ABC中,P,Q分别为AB,AC的中点.若S△APQ=1,则S四边形PBCQ=__.

    17.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C,若∠ACB=30°,AB=,则阴影部分的面积是___.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,在中,,垂足为D,点E在BC上,,垂足为,试判断DG与BC的位置关系,并说明理由.

    19.(5分)(2016山东省烟台市)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:

    (1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?
    (2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)
    20.(8分)将一个等边三角形纸片AOB放置在平面直角坐标系中,点O(0,0),点B(6,0).点C、D分别在OB、AB边上,DC∥OA,CB=2.
    (I)如图①,将△DCB沿射线CB方向平移,得到△D′C′B′.当点C平移到OB的中点时,求点D′的坐标;
    (II)如图②,若边D′C′与AB的交点为M,边D′B′与∠ABB′的角平分线交于点N,当BB′多大时,四边形MBND′为菱形?并说明理由.
    (III)若将△DCB绕点B顺时针旋转,得到△D′C′B,连接AD′,边D′C′的中点为P,连接AP,当AP最大时,求点P的坐标及AD′的值.(直接写出结果即可).

    21.(10分)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.
    (1)求抛物线的解析式;
    (2)当点P运动到什么位置时,△PAB的面积有最大值?
    (3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

    22.(10分)如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与轴交于,两点,过作直线与轴负方向相交成的角,且交轴于点,以点为圆心的圆与轴相切于点.

    (1)求直线的解析式;
    (2)将以每秒1个单位的速度沿轴向左平移,当第一次与外切时,求平移的时间.
    23.(12分)已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.求k的值;如果这个方程有两个整数根,求出它的根.
    24.(14分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.
    求反比例函数和一次函数的解析式;根据图象写出一次函数的值大于反比例函数的值的x的取值范围.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    ∵观察可知:左边三角形的数字规律为:1,2,…,n,
    右边三角形的数字规律为:2,,…,,
    下边三角形的数字规律为:1+2,,…,,
    ∴最后一个三角形中y与n之间的关系式是y=2n+n.
    故选B.
    【点睛】
    考点:规律型:数字的变化类.
    2、D
    【解析】
    过B作BN⊥AC于N,BM⊥AD于M,根据折叠得出∠C′AB=∠CAB,根据角平分线性质得出BN=BM,根据三角形的面积求出BN,即可得出点B到AD的最短距离是8,得出选项即可.
    【详解】

    解:如图:
    过B作BN⊥AC于N,BM⊥AD于M,
    ∵将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,
    ∴∠C′AB=∠CAB,
    ∴BN=BM,
    ∵△ABC的面积等于12,边AC=3,
    ∴×AC×BN=12,
    ∴BN=8,
    ∴BM=8,
    即点B到AD的最短距离是8,
    ∴BP的长不小于8,
    即只有选项D符合,
    故选D.
    【点睛】
    本题考查的知识点是折叠的性质,三角形的面积,角平分线性质的应用,解题关键是求出B到AD的最短距离,注意:角平分线上的点到角的两边的距离相等.
    3、D
    【解析】
    根据轴对称图形的概念求解.
    【详解】
    A、不是轴对称图形,故此选项错误;
    B、不是轴对称图形,故此选项错误;
    C、不是轴对称图形,故此选项错误;
    D、是轴对称图形,故此选项正确.
    故选D.
    【点睛】
    此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    4、A
    【解析】
    ∵一元二次方程mx2+2x-1=0有两个不相等的实数根,
    ∴m≠0,且22-4×m×(﹣1)>0,
    解得:m>﹣1且m≠0.
    故选A.
    【点睛】
    本题考查一元二次方程ax2+bx+c=0(a≠0)根的判别式:
    (1)当△=b2﹣4ac>0时,方程有两个不相等的实数根;
    (2)当△=b2﹣4ac=0时,方程有有两个相等的实数根;
    (3)当△=b2﹣4ac<0时,方程没有实数根.
    5、A
    【解析】
    根据异号两数相加的法则进行计算即可.
    【详解】
    解:因为-2,3异号,且|-2|<|3|,所以-2+3=1.
    故选A.
    【点睛】
    本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.
    6、A
    【解析】
    根据题意可得等量关系:原计划种植的亩数改良后种植的亩数亩,根据等量关系列出方程即可.
    【详解】
    设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,
    根据题意列方程为:.
    故选:.
    【点睛】
    本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.
    7、D
    【解析】
    根据算术平方根的定义求解.
    【详解】
    ∵=9,
    又∵(±1)2=9,
    ∴9的平方根是±1,
    ∴9的算术平方根是1.
    即的算术平方根是1.
    故选:D.
    【点睛】
    考核知识点:算术平方根.理解定义是关键.
    8、C
    【解析】
    根据一元二次方程的定义结合根的判别式即可得出关于a的一元一次不等式组,解之即可得出结论.
    【详解】
    解:∵关于x的一元二次方程有两个不相等的实数根,
    ∴ ,
    解得:k<1且k≠1.
    故选:C.
    【点睛】
    本题考查了一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a的一元一次不等式组是解题的关键.
    9、C
    【解析】
    连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.
    【详解】
    连接AD,

    ∵△ABC是等腰三角形,点D是BC边的中点,
    ∴AD⊥BC,
    ∴S△ABC=BC•AD=×4×AD=16,解得AD=8,
    ∵EF是线段AC的垂直平分线,
    ∴点C关于直线EF的对称点为点A,
    ∴AD的长为CM+MD的最小值,
    ∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.
    故选C.
    【点睛】
    本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
    10、C
    【解析】
    分析:根据“无理数”的定义进行判断即可.
    详解:
    A选项中,因为,所以A选项中的数是有理数,不能选A;
    B选项中,因为是无限循环小数,属于有理数,所以不能选B;
    C选项中,因为半径为1cm的圆的周长是cm,是个无理数,所以可以选C;
    D选项中,因为,2是有理数,所以不能选D.
    故选.C.
    点睛:正确理解无理数的定义:“无限不循环小数叫做无理数”是解答本题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、﹣a5
    【解析】
    根据幂的乘方和积的乘方运算法则计算即可.
    【详解】
    解:(-a)3•a2=-a3•a2=-a3+2=-a5.
    故答案为:-a5.
    【点睛】
    本题考查了幂的乘方和积的乘方运算.
    12、k<5且k≠1.
    【解析】
    试题解析:∵关于x的一元二次方程有两个不相等的实数根,

    解得:且
    故答案为且
    13、六
    【解析】
    试题分析:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=1.则这个正多边形的边数是六,故答案为六.
    考点:多边形内角与外角.
    14、
    【解析】
    分析:直接利用中心对称图形的性质结合概率求法直接得出答案.
    详解:∵等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,
    ∴从中随机抽取一张,卡片上的图形是中心对称图形的概率是:.
    故答案为.
    点睛:此题主要考查了中心对称图形的性质和概率求法,正确把握中心对称图形的定义是解题关键.
    15、②③④⑤
    【解析】
    试题解析:∵二次函数与x轴有两个交点,
    ∴b2-4ac>1,故①错误,
    观察图象可知:当x>-1时,y随x增大而减小,故②正确,
    ∵抛物线与x轴的另一个交点为在(1,1)和(1,1)之间,
    ∴x=1时,y=a+b+c<1,故③正确,
    ∵当m>2时,抛物线与直线y=m没有交点,
    ∴方程ax2+bx+c-m=1没有实数根,故④正确,
    ∵对称轴x=-1=-,
    ∴b=2a,
    ∵a+b+c<1,
    ∴3a+c<1,故⑤正确,
    故答案为②③④⑤.
    16、1
    【解析】
    根据三角形的中位线定理得到PQ=BC,得到相似比为,再根据相似三角形面积之比等于相似比的平方,可得到结果.
    【详解】
    解:∵P,Q分别为AB,AC的中点,
    ∴PQ∥BC,PQ=BC,
    ∴△APQ∽△ABC,
    ∴ =()2=,
    ∵S△APQ=1,
    ∴S△ABC=4,
    ∴S四边形PBCQ=S△ABC﹣S△APQ=1,
    故答案为1.
    【点睛】
    本题考查相似三角形的判定和性质,三角形中位线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    17、﹣
    【解析】
    连接OB.
    ∵AB是⊙O切线,
    ∴OB⊥AB,
    ∵OC=OB,∠C=30°,
    ∴∠C=∠OBC=30°,
    ∴∠AOB=∠C+∠OBC=60°,
    在Rt△ABO中,∵∠ABO=90°,AB=,∠A=30°,
    ∴OB=1,
    ∴S阴=S△ABO﹣S扇形OBD=×1×﹣ =﹣ .


    三、解答题(共7小题,满分69分)
    18、DG∥BC,理由见解析
    【解析】
    由垂线的性质得出CD∥EF,由平行线的性质得出∠2=∠DCE,再由已知条件得出∠1=∠DCE,即可得出结论.
    【详解】
    解:DG∥BC,理由如下:
    ∵CD⊥AB,EF⊥AB,
    ∴CD∥EF,
    ∴∠2=∠DCE,
    ∵∠1=∠2,
    ∴∠1=∠DCE,
    ∴DG∥BC.
    【点睛】
    本题考查平行线的判定与性质;熟练掌握平行线的判定与性质,证明∠1=∠DCE是解题关键.
    19、(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元.
    【解析】
    (1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元可列方程18x+12(20﹣x)=300,解方程即可;
    (2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.
    【详解】
    (1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,
    根据题意得:18x+12(20﹣x)=300,
    解得:x=10,
    则20﹣x=20﹣10=10,
    则甲、乙两种型号的产品分别为10万只,10万只;
    (2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,
    根据题意得:13y+8.8(20﹣y)≤239,
    解得:y≤15,
    根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,
    当y=15时,W最大,最大值为91万元.
    所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元.
    考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用.
    20、(Ⅰ)D′(3+,3);(Ⅱ)当BB'=时,四边形MBND'是菱形,理由见解析;
    (Ⅲ)P().
    【解析】
    (Ⅰ)如图①中,作DH⊥BC于H.首先求出点D坐标,再求出CC′的长即可解决问题;
    (Ⅱ)当BB'=时,四边形MBND'是菱形.首先证明四边形MBND′是平行四边形,再证明BB′=BC′即可解决问题;
    (Ⅲ)在△ABP中,由三角形三边关系得,AP<AB+BP,推出当点A,B,P三点共线时,AP最大.
    【详解】
    (Ⅰ)如图①中,作DH⊥BC于H,

    ∵△AOB是等边三角形,DC∥OA,
    ∴∠DCB=∠AOB=60°,∠CDB=∠A=60°,
    ∴△CDB是等边三角形,
    ∵CB=2,DH⊥CB,
    ∴CH=HB=,DH=3,
    ∴D(6﹣,3),
    ∵C′B=3,
    ∴CC′=2﹣3,
    ∴DD′=CC′=2﹣3,
    ∴D′(3+,3).
    (Ⅱ)当BB'=时,四边形MBND'是菱形,
    理由:如图②中,

    ∵△ABC是等边三角形,
    ∴∠ABO=60°,
    ∴∠ABB'=180°﹣∠ABO=120°,
    ∵BN是∠ACC'的角平分线,
    ∴∠NBB′'=∠ABB'=60°=∠D′C′B,
    ∴D'C'∥BN,∵AB∥B′D′
    ∴四边形MBND'是平行四边形,
    ∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,
    ∴△MC′B'和△NBB'是等边三角形,
    ∴MC=CE',NC=CC',
    ∵B'C'=2,
    ∵四边形MBND'是菱形,
    ∴BN=BM,
    ∴BB'=B'C'=;
    (Ⅲ)如图连接BP,

    在△ABP中,由三角形三边关系得,AP<AB+BP,
    ∴当点A,B,P三点共线时,AP最大,
    如图③中,在△D'BE'中,由P为D'E的中点,得AP⊥D'E',PD'=,
    ∴CP=3,
    ∴AP=6+3=9,
    在Rt△APD'中,由勾股定理得,AD'==2.
    此时P(,﹣).
    【点睛】
    此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(2)的关键是四边形MCND'是平行四边形,解(3)的关键是判断出点A,C,P三点共线时,AP最大.
    21、(1)抛物线解析式为y=﹣x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).
    【解析】
    (1)利用待定系数法进行求解即可得;
    (2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN•AG+PN•BM=PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;
    (3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.
    【详解】
    (1)∵抛物线过点B(6,0)、C(﹣2,0),
    ∴设抛物线解析式为y=a(x﹣6)(x+2),
    将点A(0,6)代入,得:﹣12a=6,
    解得:a=﹣,
    所以抛物线解析式为y=﹣(x﹣6)(x+2)=﹣x2+2x+6;
    (2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,

    设直线AB解析式为y=kx+b,
    将点A(0,6)、B(6,0)代入,得:

    解得:,
    则直线AB解析式为y=﹣x+6,
    设P(t,﹣t2+2t+6)其中0<t<6,
    则N(t,﹣t+6),
    ∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,
    ∴S△PAB=S△PAN+S△PBN
    =PN•AG+PN•BM
    =PN•(AG+BM)
    =PN•OB
    =×(﹣t2+3t)×6
    =﹣t2+9t
    =﹣(t﹣3)2+,
    ∴当t=3时,△PAB的面积有最大值;
    (3)△PDE为等腰直角三角形,
    则PE=PD,
    点P(m,-m2+2m+6),
    函数的对称轴为:x=2,则点E的横坐标为:4-m,
    则PE=|2m-4|,
    即-m2+2m+6+m-6=|2m-4|,
    解得:m=4或-2或5+或5-(舍去-2和5+)
    故点P的坐标为:(4,6)或(5-,3-5).
    【点睛】
    本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.
    22、(1)直线的解析式为:.(2)平移的时间为5秒.
    【解析】
    (1)求直线的解析式,可以先求出A、C两点的坐标,就可以根据待定系数法求出函数的解析式.
    (2)设⊙O2平移t秒后到⊙O3处与⊙O1第一次外切于点P,⊙O3与x轴相切于D1点,连接O1O3,O3D1.
    在直角△O1O3D1中,根据勾股定理,就可以求出O1D1,进而求出D1D的长,得到平移的时间.
    【详解】
    (1)由题意得,
    ∴点坐标为.
    ∵在中,,

    ∴点的坐标为.
    设直线的解析式为,
    由过、两点,
    得,
    解得,
    ∴直线的解析式为:.
    (2)如图,

    设平移秒后到处与第一次外切于点,
    与轴相切于点,连接,.
    则,
    ∵轴,∴,
    在中,.
    ∵,
    ∴,
    ∴(秒),
    ∴平移的时间为5秒.
    【点睛】
    本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.
    23、(2)k=﹣2,﹣2.(2)方程的根为x2=x2=2.
    【解析】
    (2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;
    (2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.
    【详解】
    解:(2)根据题意,得△=(﹣6)2﹣4×3(2﹣k)≥0,
    解得 k≥﹣2.
    ∵k为负整数,
    ∴k=﹣2,﹣2.
    (2)当k=﹣2时,不符合题意,舍去;
    当k=﹣2时,符合题意,此时方程的根为x2=x2=2.
    【点睛】
    本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(2)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了一元二次方程的解法.
    24、 (1)y=,y=−x−1;(2)x<−2或0 【解析】
    (1)利用点A的坐标可求出反比例函数解析式,再把B(1,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;
    (2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数的值的x的取值范围.
    【详解】
    (1)∵A(−2,1)在反比例函数y=的图象上,
    ∴1=,解得m=−2.
    ∴反比例函数解析式为y=,
    ∵B(1,n)在反比例函数上,
    ∴n=−2,
    ∴B的坐标(1,−2),
    把A(−2,1),B(1,−2)代入y=kx+b得

    解得:
    ∴一次函数的解析式为y=−x−1;
    (2)由图像知:当x<−2或0 【点睛】
    本题考查了反比例函数与一次函数的交点问题,属于简单题,熟悉函数图像的性质是解题关键.

    相关试卷

    南京市鼓楼区2021-2022学年中考数学对点突破模拟试卷含解析:

    这是一份南京市鼓楼区2021-2022学年中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了答题时请按要求用笔,下列计算正确的有个,不等式3x<2,下列命题正确的是等内容,欢迎下载使用。

    江苏省盐城初级中学2021-2022学年中考数学对点突破模拟试卷含解析:

    这是一份江苏省盐城初级中学2021-2022学年中考数学对点突破模拟试卷含解析,共24页。

    江苏省南京鼓楼区29中学集团校2021-2022学年中考数学最后冲刺浓缩精华卷含解析:

    这是一份江苏省南京鼓楼区29中学集团校2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共19页。试卷主要包含了已知方程组,那么x+y的值,下列各数中,无理数是,-的立方根是,下列四个命题,正确的有个等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map