2021-2022学年吉林省长春市第一五三中学中考数学最后一模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图1,在等边△ABC中,D是BC的中点,P为AB 边上的一个动点,设AP=x,图1中线段DP的长为y,若表示y与x的函数关系的图象如图2所示,则△ABC的面积为( )
A.4 B. C.12 D.
2.如图,在平面直角坐标系xOy中,菱形AOBC的一个顶点O在坐标原点,一边OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于( )
A.30 B.40 C.60 D.80
3.下列运算正确的是( )
A.x2•x3=x6 B.x2+x2=2x4
C.(﹣2x)2=4x2 D.( a+b)2=a2+b2
4.不等式组的解集在数轴上表示正确的是( )
A. B. C. D.
5.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为( )米
A. B. C.+1 D.3
6.下列计算正确的是( )
A.a+a=2a B.b3•b3=2b3 C.a3÷a=a3 D.(a5)2=a7
7.如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为( )。
A.70° B.65° C.50° D.25°
8.下面的统计图反映了我市2011﹣2016年气温变化情况,下列说法不合理的是( )
A.2011﹣2014年最高温度呈上升趋势
B.2014年出现了这6年的最高温度
C.2011﹣2015年的温差成下降趋势
D.2016年的温差最大
9.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )
A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-2
10.一元二次方程的根的情况是
A.有两个不相等的实数根 B.有两个相等的实数根
C.没有实数根 D.无法判断
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如果一个三角形两边为3cm,7cm,且第三边为奇数,则三角形的周长是_________.
12.如图,正方形ABCD的边长为6,E,F是对角线BD上的两个动点,且EF=,连接CE,CF,则△CEF周长的最小值为_____.
13.若式子有意义,则x的取值范围是_____________.
14.如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为_______.
15.一个不透明的袋子中装有三个小球,它们除分别标有的数字 1,3,5 不同外,其他完全相同.从袋子中任意摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之 和为8的概率是__________.
16.已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是___.
三、解答题(共8题,共72分)
17.(8分)如图,AD是△ABC的中线,过点C作直线CF∥AD.
(问题)如图①,过点D作直线DG∥AB交直线CF于点E,连结AE,求证:AB=DE.
(探究)如图②,在线段AD上任取一点P,过点P作直线PG∥AB交直线CF于点E,连结AE、BP,探究四边形ABPE是哪类特殊四边形并加以证明.
(应用)在探究的条件下,设PE交AC于点M.若点P是AD的中点,且△APM的面积为1,直接写出四边形ABPE的面积.
18.(8分)先化简,再求值:,其中a=+1.
19.(8分)在“双十二”期间,两个超市开展促销活动,活动方式如下:
超市:购物金额打9折后,若超过2000元再优惠300元;
超市:购物金额打8折.
某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:
(1)若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;
(2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)
20.(8分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线点F.问:图中△APD与哪个三角形全等?并说明理由;求证:△APE∽△FPA;猜想:线段PC,PE,PF之间存在什么关系?并说明理由.
21.(8分)定义:若某抛物线上有两点A、B关于原点对称,则称该抛物线为“完美抛物线”.已知二次函数y=ax2-2mx+c(a,m,c均为常数且ac≠0)是“完美抛物线”:
(1)试判断ac的符号;
(2)若c=-1,该二次函数图象与y轴交于点C,且S△ABC=1.
①求a的值;
②当该二次函数图象与端点为M(-1,1)、N(3,4)的线段有且只有一个交点时,求m的取值范围.
22.(10分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,求∠CMA的度数______.
23.(12分)2018年大唐芙蓉园新春灯会以“鼓舞中华”为主题,既有新年韵味,又结合“一带一路”展示了丝绸之路上古今文化经贸繁荣的盛况。小丽的爸爸买了两张门票,她和各个两人都想去观看,可是爸爸只能带一人去,于是读九年级的哥哥提议用他们3人吃饭的彩色筷子做游戏(筷子除颜色不同,其余均相同),其中小丽的筷子颜色是红色,哥哥的是银色,爸爸的是白色,将3人的3双款子全部放在 一个不透明的筷篓里摇匀,小丽随机从筷篓里取出一根,记下颜色放回,然后哥哥同样从筷篓里取出一根,若两人取出的筷子颜色相同则小丽去,若不同,则哥哥去。
(1)求小丽随机取出一根筷子是红色的概率;
(2)请用列表或画树状图的方法求出小随爸爸去看新春灯会的概率。
24.某工程队承担了修建长30米地下通道的任务,由于工作需要,实际施工时每周比原计划多修1米,结果比原计划提前1周完成.求该工程队原计划每周修建多少米?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
分析:
由图1、图2结合题意可知,当DP⊥AB时,DP最短,由此可得DP最短=y最小=,这样如图3,过点P作PD⊥AB于点P,连接AD,结合△ABC是等边三角形和点D是BC边的中点进行分析解答即可.
详解:
由题意可知:当DP⊥AB时,DP最短,由此可得DP最短=y最小=,如图3,过点P作PD⊥AB于点P,连接AD,
∵△ABC是等边三角形,点D是BC边上的中点,
∴∠ABC=60°,AD⊥BC,
∵DP⊥AB于点P,此时DP=,
∴BD=,
∴BC=2BD=4,
∴AB=4,
∴AD=AB·sin∠B=4×sin60°=,
∴S△ABC=AD·BC=.
故选D.
点睛:“读懂题意,知道当DP⊥AB于点P时,DP最短=”是解答本题的关键.
2、B
【解析】
过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,结合反比例函数图象上点的坐标特征即可求出a的值,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=S菱形OBCA,结合菱形的面积公式即可得出结论.
【详解】
过点A作AM⊥x轴于点M,如图所示.
设OA=a,
在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,
∴AM=OA•sin∠AOB=a,OM==a,
∴点A的坐标为(a,a).
∵点A在反比例函数y=的图象上,
∴a•a=a2=48,
解得:a=1,或a=-1(舍去).
∴AM=8,OM=6,OB=OA=1.
∵四边形OACB是菱形,点F在边BC上,
∴S△AOF=S菱形OBCA=OB•AM=2.
故选B.
【点睛】
本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=S菱形OBCA.
3、C
【解析】
根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可.
【详解】
A、x2•x3=x5,故A选项错误;
B、x2+x2=2x2,故B选项错误;
C、(﹣2x)2=4x2,故C选项正确;
D、( a+b)2=a2+2ab+b2,故D选项错误,
故选C.
【点睛】
本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键
4、D
【解析】
试题分析:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:,故选D.
考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.
5、C
【解析】
由题意可知,AC=1,AB=2,∠CAB=90°
据勾股定理则BC=m;
∴AC+BC=(1+)m.
答:树高为(1+)米.
故选C.
6、A
【解析】
根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解.
【详解】
A.a+a=2a,故本选项正确;
B.,故本选项错误;
C. ,故本选项错误;
D.,故本选项错误.
故选:A.
【点睛】
考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,比较基础,掌握运算法则是解题的关键.
7、C
【解析】
首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.
【详解】
解:∵AD∥BC,
∴∠EFB=∠FED=65°,
由折叠的性质知,∠DEF=∠FED′=65°,
∴∠AED′=180°-2∠FED=50°,
故选:C.
【点睛】
此题考查了长方形的性质与折叠的性质.此题比较简单,解题的关键是注意数形结合思想的应用.
8、C
【解析】
利用折线统计图结合相应数据,分别分析得出符合题意的答案.
【详解】
A选项:年最高温度呈上升趋势,正确;
B选项:2014年出现了这6年的最高温度,正确;
C选项:年的温差成下降趋势,错误;
D选项:2016年的温差最大,正确;
故选C.
【点睛】
考查了折线统计图,利用折线统计图获取正确信息是解题关键.
9、A
【解析】
试题分析:根据函数图象右移减、左移加,上移加、下移减,可得答案.
解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 y=(x﹣1)2+2,
故选A.
考点:二次函数图象与几何变换.
10、A
【解析】
把a=1,b=-1,c=-1,代入,然后计算,最后根据计算结果判断方程根的情况.
【详解】
方程有两个不相等的实数根.
故选A.
【点睛】
本题考查根的判别式,把a=1,b=-1,c=-1,代入计算是解题的突破口.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、15cm、17cm、19cm.
【解析】
试题解析:设三角形的第三边长为xcm,由题意得:
7-3<x<7+3,
即4<x<10,
则x=5,7,9,
三角形的周长:3+7+5=15(cm),
3+7+7=17(cm),
3+7+9=19(cm).
考点:三角形三边关系.
12、2+4
【解析】
如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.
【详解】
如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.
∵CH=EF,CH∥EF,
∴四边形EFHC是平行四边形,
∴EC=FH,
∵FA=FC,
∴EC+CF=FH+AF=AH,
∵四边形ABCD是正方形,
∴AC⊥BD,∵CH∥DB,
∴AC⊥CH,
∴∠ACH=90°,
在Rt△ACH中,AH==4,
∴△EFC的周长的最小值=2+4,
故答案为:2+4.
【点睛】
本题考查轴对称﹣最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.
13、x<
【解析】
由题意得:1﹣2x>0,解得:,
故答案为.
14、
【解析】
解:如图,作OH⊥DK于H,连接OK,
∵以AD为直径的半圆,正好与对边BC相切,∴AD=2CD.
∴根据折叠对称的性质,A'D=2CD.
∵∠C=90°,∴∠DA'C=30°.∴∠ODH=30°.∴∠DOH=60°.
∴∠DOK=120°.
∴扇形ODK的面积为.
∵∠ODH=∠OKH=30°,OD=3cm,∴.∴.
∴△ODK的面积为.
∴半圆还露在外面的部分(阴影部分)的面积是:.
故答案为:.
15、
【解析】
根据题意列出表格或树状图即可解答.
【详解】
解:根据题意画出树状图如下:
总共有9种情况,其中两个数字之和为8的有2种情况,
∴,
故答案为:.
【点睛】
本题考查了概率的求解,解题的关键是画出树状图或列出表格,并熟记概率的计算公式.
16、2, 0≤x≤2或≤x≤2.
【解析】
(2)由图象直接可得答案;
(2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答
【详解】
(2)由 函数图象可知,乙比甲晚出发2小时.
故答案为2.
(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:
一是甲出发,乙还未出发时:此时0≤x≤2;
二是乙追上甲后,直至乙到达终点时:
设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,
∴k=5,
∴甲的函数解析式为:y=5x①
设乙的函数解析式为:y=k′x+b,将坐标(2,0),(2,20)代入得: ,
解得 ,
∴乙的函数解析式为:y=20x﹣20 ②
由①②得 ,
∴ ,
故 ≤x≤2符合题意.
故答案为0≤x≤2或≤x≤2.
【点睛】
此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据
三、解答题(共8题,共72分)
17、【问题】:详见解析;【探究】:四边形ABPE是平行四边形,理由详见解析;【应用】:8.
【解析】
(1)先根据平行线的性质和等量代换得出∠1=∠3,再利用中线性质得到BD=DC,证明△ABD≌△EDC,从而证明AB=DE(2)方法一:过点D作DN∥PE交直线CF于点N,由平行线性质得出四边形PDNE是平行四边形,从而得到四边形ABPE是平行四边形.方法二: 延长BP交直线CF于点N,根据平行线的性质结合等量代换证明△ABP≌△EPN,
从而证明四边形ABPE是平行四边形(3)延长BP交CF于H,根据平行四边形的性质结合三角形的面积公式求解即可.
【详解】
证明:如图①
是的中线,
(或证明四边形ABDE是平行四边形,从而得到)
【探究】
四边形ABPE是平行四边形.
方法一:如图②,
证明:过点D作交直线于点,
∴四边形是平行四边形,
∵由问题结论可得
∴四边形是平行四边形.
方法二:如图③,
证明:延长BP交直线CF于点N,
∵是的中线,
∴四边形是平行四边形.
【应用】
如图④,延长BP交CF于H.
由上面可知,四边形是平行四边形,
∴四边形APHE是平行四边形,
,
【点睛】
此题重点考查学生对平行线性质,平行四边形性质的综合应用能力,熟练掌握平行线的性质是解题的关键.
18、
【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.
【详解】
原式=
=,
当a=+1时,原式=.
【点睛】
本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.
19、(1)这种篮球的标价为每个50元;(2)见解析
【解析】
(1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球个,在A超市可买篮球个,根据在B商场比在A商场多买5个列方程进行求解即可;
(2)分情况,单独在A超市买100个、单独在B超市买100个、两家超市共买100个进行讨论即可得.
【详解】
(1)设这种篮球的标价为每个x元,
依题意,得,
解得:x=50,
经检验:x=50是原方程的解,且符合题意,
答:这种篮球的标价为每个50元;
(2)购买100个篮球,最少的费用为3850元,
单独在A超市一次买100个,则需要费用:100×50×0.9-300=4200元,
在A超市分两次购买,每次各买50个,则需要费用:2(50×50×0.9-300)=3900元,
单独在B超市购买:100×50×0.8=4000元,
在A、B两个超市共买100个,
根据A超市的方案可知在A超市一次购买:=44,即购买45个时花费最小,为45×50×0.9-300=1725元,两次购买,每次各买45个,需要1725×2=3450元,其余10个在B超市购买,需要10×50×0.8=400元,这样一共需要3450+400=3850元,
综上可知最少费用的购买方案:在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.
【点睛】
本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
20、 (1)△CPD.理由参见解析;(2)证明参见解析;(3)PC2=PE•PF.理由参见解析.
【解析】
(1)根据菱形的性质,利用SAS来判定两三角形全等;(2)根据第一问的全等三角形结论及已知,利用两组角相等则两三角形相似来判定即可;(3)根据相似三角形的对应边成比例及全等三角形的对应边相等即可得到结论.
【详解】
解:(1)△APD≌△CPD.
理由:∵四边形ABCD是菱形,
∴AD=CD,∠ADP=∠CDP.
又∵PD=PD,∴△APD≌△CPD(SAS).
(2)∵△APD≌△CPD,
∴∠DAP=∠DCP,
∵CD∥AB,
∴∠DCF=∠DAP=∠CFB,
又∵∠FPA=∠FPA,
∴△APE∽△FPA(两组角相等则两三角形相似).
(3)猜想:PC2=PE•PF.
理由:∵△APE∽△FPA,
∴即PA2=PE•PF.
∵△APD≌△CPD,
∴PA=PC.
∴PC2=PE•PF.
【点睛】
本题考查1.相似三角形的判定与性质;2.全等三角形的判定;3.菱形的性质,综合性较强.
21、 (1) ac<3;(3)①a=1;②m>或m<.
【解析】
(1)设A (p,q).则B (-p,-q),把A、B坐标代入解析式可得方程组即可得到结论;
(3)由c=-1,得到p3=,a>3,且C(3,-1),求得p=±,①根据三角形的面积公式列方程即可得到结果;②由①可知:抛物线解析式为y=x3-3mx-1,根据M(-1,1)、N(3,4).得到这些MN的解析式y=x+(-1≤x≤3),联立方程组得到x3-3mx-1=x+,故问题转化为:方程x3-(3m+)x-=3在-1≤x≤3内只有一个解,建立新的二次函数:y=x3-(3m+)x-,根据题意得到(Ⅰ)若-1≤x1<3且x3>3,(Ⅱ)若x1<-1且-1<x3≤3:列方程组即可得到结论.
【详解】
(1)设A (p,q).则B (-p,-q),
把A、B坐标代入解析式可得:
,
∴3ap3+3c=3.即p3=−,
∴−≥3,
∵ac≠3,
∴−>3,
∴ac<3;
(3)∵c=-1,
∴p3=,a>3,且C(3,-1),
∴p=±,
①S△ABC=×3×1=1,
∴a=1;
②由①可知:抛物线解析式为y=x3-3mx-1,
∵M(-1,1)、N(3,4).
∴MN:y=x+(-1≤x≤3),
依题,只需联立在-1≤x≤3内只有一个解即可,
∴x3-3mx-1=x+,
故问题转化为:方程x3-(3m+)x-=3在-1≤x≤3内只有一个解,
建立新的二次函数:y=x3-(3m+)x-,
∵△=(3m+)3+11>3且c=-<3,
∴抛物线y=x3−(3m+)x−与x轴有两个交点,且交y轴于负半轴.
不妨设方程x3−(3m+)x−=3的两根分别为x1,x3.(x1<x3)
则x1+x3=3m+,x1x3=−
∵方程x3−(3m+)x−=3在-1≤x≤3内只有一个解.
故分两种情况讨论:
(Ⅰ)若-1≤x1<3且x3>3:则
.即:,
可得:m>.
(Ⅱ)若x1<-1且-1<x3≤3:则
.即:,
可得:m<,
综上所述,m>或m<.
【点睛】
本题考查了待定系数法求二次函数的解析式,一元二次方程根与系数的关系,三角形面积公式,正确的理解题意是解题的关键.
22、∠CMA =35°.
【解析】
根据两直线平行,同旁内角互补得出,再根据是的平分线,即可得出的度数,再由两直线平行,内错角相等即可得出结论.
【详解】
∵AB∥CD,∴∠ACD+∠CAB=180°.
又∵∠ACD=110°,∴∠CAB=70°,由作法知,是的平分线,∴.
又∵AB∥CD,∴∠CMA=∠BAM=35°.
【点睛】
本题考查了角平分线的作法和意义,平行线的性质等知识解决问题.解题时注意:两直线平行,内错角相等.
23、(1);(2).
【解析】
(1)直接利用概率公式计算;
(2)画树状图展示所有36种等可能的结果数,再找出两人取出的筷子颜色相同的结果数,然后根据概率公式求解.
【详解】
(1)小丽随机取出一根筷子是红色的概率==;
(2)画树状图为:
共有36种等可能的结果数,其中两人取出的筷子颜色相同的结果数为12,
所以小丽随爸爸去看新春灯会的概率==.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.
24、该工程队原计划每周修建5米.
【解析】
找出等量关系是工作时间=工作总量÷工作效率,可根据实际施工用的时间+1周=原计划用的时间,来列方程求解.
【详解】
设该工程队原计划每周修建x米.
由题意得:+1.
整理得:x2+x﹣32=2.
解得:x1=5,x2=﹣6(不合题意舍去).
经检验:x=5是原方程的解.
答:该工程队原计划每周修建5米.
【点睛】
本题考查了分式方程的应用,找到合适的等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率,可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.
吉林省长春市第103中学2021-2022学年中考数学考前最后一卷含解析: 这是一份吉林省长春市第103中学2021-2022学年中考数学考前最后一卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,二次函数y=ax2+bx﹣2等内容,欢迎下载使用。
2022年吉林省长春市第一五三中学中考五模数学试题含解析: 这是一份2022年吉林省长春市第一五三中学中考五模数学试题含解析,共15页。试卷主要包含了计算的值等内容,欢迎下载使用。
2021-2022学年长春市绿园区中考数学最后一模试卷含解析: 这是一份2021-2022学年长春市绿园区中考数学最后一模试卷含解析,共21页。试卷主要包含了拒绝“餐桌浪费”,刻不容缓,估计的值在等内容,欢迎下载使用。