|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年吉林省白城市通榆县十校联考最后数学试题含解析
    立即下载
    加入资料篮
    2021-2022学年吉林省白城市通榆县十校联考最后数学试题含解析01
    2021-2022学年吉林省白城市通榆县十校联考最后数学试题含解析02
    2021-2022学年吉林省白城市通榆县十校联考最后数学试题含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年吉林省白城市通榆县十校联考最后数学试题含解析

    展开
    这是一份2021-2022学年吉林省白城市通榆县十校联考最后数学试题含解析,共23页。试卷主要包含了答题时请按要求用笔,计算6m3÷的结果是,计算﹣2+3的结果是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有(  )

    A.1个 B.2个 C.3个 D.4个
    2.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为( )
    A.14 B.7 C.﹣2 D.2
    3.如图,CE,BF分别是△ABC的高线,连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为 ( )

    A.6 B.5 C.4 D.3
    4.下列各数:1.414,,﹣,0,其中是无理数的为( )
    A.1.414 B. C.﹣ D.0
    5.下列哪一个是假命题(  )
    A.五边形外角和为360°
    B.切线垂直于经过切点的半径
    C.(3,﹣2)关于y轴的对称点为(﹣3,2)
    D.抛物线y=x2﹣4x+2017对称轴为直线x=2
    6.2022年冬奥会,北京、延庆、张家口三个赛区共25个场馆,北京共12个,其中11个为2008年奥运会遗留场馆,唯一一个新建的场馆是国家速滑馆,可容纳12000人观赛,将12000用科学记数法表示应为( )
    A.12×10 B.1.2×10 C.1.2×10 D.0.12×10
    7.如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,,则DE:EC=( )

    A.2:5 B.2:3 C.3:5 D.3:2
    8.计算6m3÷(-3m2)的结果是(  )
    A.-3m B.-2m C.2m D.3m
    9.计算﹣2+3的结果是(  )
    A.1 B.﹣1 C.﹣5 D.﹣6
    10.已知抛物线y=ax2+bx+c与x轴交于点A和点B,顶点为P,若△ABP组成的三角形恰为等腰直角三角形,则b2﹣4ac的值为(  )
    A.1 B.4 C.8 D.12
    二、填空题(共7小题,每小题3分,满分21分)
    11. “五一劳动节”,王老师将全班分成六个小组开展社会实践活动,活动结束后,随机抽取一个小组进行汇报展示.第五组被抽到的概率是___.
    12.如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为_____.

    13.如图,甲、乙两船同时从港口出发,甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°方向航行,半小时后甲船到达点C,乙船正好到达甲船正西方向的点B,则乙船的航程为______海里(结果保留根号).

    14.如图,PA,PB分别为的切线,切点分别为A、B,,则______.

    15.已知⊙O的半径为5,由直径AB的端点B作⊙O的切线,从圆周上一点P引该切线的垂线PM,M为垂足,连接PA,设PA=x,则AP+2PM的函数表达式为______,此函数的最大值是____,最小值是______.
    16.已知反比例函数的图像经过点,那么的值是__.
    17.如图,正方形ABCD的边长为2,点B与原点O重合,与反比例函数y=的图像交于E、F两点,若△DEF的面积为,则k的值_______ .

    三、解答题(共7小题,满分69分)
    18.(10分)研究发现,抛物线上的点到点F(0,1)的距离与到直线l:的距离相等.如图1所示,若点P是抛物线上任意一点,PH⊥l于点H,则PF=PH.
    基于上述发现,对于平面直角坐标系xOy中的点M,记点到点的距离与点到点的距离之和的最小值为d,称d为点M关于抛物线的关联距离;当时,称点M为抛物线的关联点.

    (1)在点,,,中,抛物线的关联点是_____ ;
    (2)如图2,在矩形ABCD中,点,点,
    ①若t=4,点M在矩形ABCD上,求点M关于抛物线的关联距离d的取值范围;
    ②若矩形ABCD上的所有点都是抛物线的关联点,则t的取值范围是________.
    19.(5分)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.
    求证:AE∥CF.

    20.(8分)已知:如图,AB为⊙O的直径,C是BA延长线上一点,CP切⊙O于P,弦PD⊥AB于E,过点B作BQ⊥CP于Q,交⊙O于H,
    (1)如图1,求证:PQ=PE;
    (2)如图2,G是圆上一点,∠GAB=30°,连接AG交PD于F,连接BF,若tan∠BFE=3,求∠C的度数;
    (3)如图3,在(2)的条件下,PD=6,连接QC交BC于点M,求QM的长.

    21.(10分)列方程解应用题:
    某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格.
    22.(10分)如图,在▱ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,AE=AF.
    (1)求证:四边形ABCD是菱形;
    (2)若∠EAF=60°,CF=2,求AF的长.

    23.(12分)如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字,,,,,,如图2,正方形的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。如:若从圈起跳,第一次掷得,就顺时针连续跳个边长,落在圈;若第二次掷得,就从圈开始顺时针连续跳个边长,落得圈;…设游戏者从圈起跳.
    小贤随机掷一次骰子,求落回到圈的概率.小南随机掷两次骰子,用列表法求最后落回到圈的概率,并指出他与小贤落回到圈的可能性一样吗?
    24.(14分)如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.
    (1)求证:AC平分∠DAO.
    (2)若∠DAO=105°,∠E=30°
    ①求∠OCE的度数;
    ②若⊙O的半径为2,求线段EF的长.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    根据轴对称图形与中心对称图形的概念判断即可.
    【详解】
    第一个图形不是轴对称图形,是中心对称图形;
    第二、三、四个图形是轴对称图形,也是中心对称图形;
    故选:C.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    2、D
    【解析】
    解不等式得到x≥m+3,再列出关于m的不等式求解.
    【详解】
    ≤﹣1,
    m﹣1x≤﹣6,
    ﹣1x≤﹣m﹣6,
    x≥m+3,
    ∵关于x的一元一次不等式≤﹣1的解集为x≥4,
    ∴m+3=4,解得m=1.
    故选D.
    考点:不等式的解集
    3、C
    【解析】
    连接EG、FG,根据斜边中线长为斜边一半的性质即可求得EG=FG=BC,因为D是EF中点,根据等腰三角形三线合一的性质可得GD⊥EF,再根据勾股定理即可得出答案.
    【详解】
    解:连接EG、FG,

    EG、FG分别为直角△BCE、直角△BCF的斜边中线,
    ∵直角三角形斜边中线长等于斜边长的一半
    ∴EG=FG=BC=×10=5,
    ∵D为EF中点
    ∴GD⊥EF,
    即∠EDG=90°,
    又∵D是EF的中点,
    ∴,
    在中,
    ,
    故选C.
    【点睛】
    本题考查了直角三角形中斜边 上中线等于斜边的一半的性质、勾股定理以及等腰三角形三线合一的性质,本题中根据等腰三角形三线合一的性质求得GD⊥EF是解题的关键.
    4、B
    【解析】
    试题分析:根据无理数的定义可得是无理数.故答案选B.
    考点:无理数的定义.
    5、C
    【解析】
    分析:
    根据每个选项所涉及的数学知识进行分析判断即可.
    详解:
    A选项中,“五边形的外角和为360°”是真命题,故不能选A;
    B选项中,“切线垂直于经过切点的半径”是真命题,故不能选B;
    C选项中,因为点(3,-2)关于y轴的对称点的坐标是(-3,-2),所以该选项中的命题是假命题,所以可以选C;
    D选项中,“抛物线y=x2﹣4x+2017对称轴为直线x=2”是真命题,所以不能选D.
    故选C.
    点睛:熟记:(1)凸多边形的外角和都是360°;(2)切线的性质;(3)点P(a,b)关于y轴的对称点为(-a,b);(4)抛物线的对称轴是直线: 等数学知识,是正确解答本题的关键.
    6、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    数据12000用科学记数法表示为1.2×104,故选:B.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    7、B
    【解析】
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD
    ∴∠EAB=∠DEF,∠AFB=∠DFE
    ∴△DEF∽△BAF

    ∵,
    ∴DE:AB=2:5
    ∵AB=CD,
    ∴DE:EC=2:3
    故选B
    8、B
    【解析】
    根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.
    【详解】
    6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.
    故选B.
    9、A
    【解析】
    根据异号两数相加的法则进行计算即可.
    【详解】
    解:因为-2,3异号,且|-2|<|3|,所以-2+3=1.
    故选A.
    【点睛】
    本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.
    10、B
    【解析】
    设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),利用二次函数的性质得到P(-,),利用x1、x2为方程ax2+bx+c=0的两根得到x1+x2=-,x1•x2=,则利用完全平方公式变形得到AB=|x1-x2|= ,接着根据等腰直角三角形的性质得到||=•,然后进行化简可得到b2-1ac的值.
    【详解】
    设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),顶点P的坐标为(-,),
    则x1、x2为方程ax2+bx+c=0的两根,
    ∴x1+x2=-,x1•x2=,
    ∴AB=|x1-x2|====,
    ∵△ABP组成的三角形恰为等腰直角三角形,
    ∴||=•,
    =,
    ∴b2-1ac=1.
    故选B.
    【点睛】
    本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质和等腰直角三角形的性质.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    根据概率是所求情况数与总情况数之比,可得答案.
    【详解】
    因为共有六个小组,
    所以第五组被抽到的概率是,
    故答案为:.
    【点睛】
    本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.
    12、1
    【解析】
    过A作x轴垂线,过B作x轴垂线,求出A(1,1),B(2,),C(1,k),D(2,),将面积进行转换S△OAC=S△COM﹣S△AOM,S△ABD=S梯形AMND﹣S梯形AAMNB进而求解.
    【详解】
    解:过A作x轴垂线,过B作x轴垂线,

    点A,B在反比例函数y=(x>0)的图象上,点A,B的横坐标分别为1,2,
    ∴A(1,1),B(2,),
    ∵AC∥BD∥y轴,
    ∴C(1,k),D(2,),
    ∵△OAC与△ABD的面积之和为,

    S△ABD=S梯形AMND﹣S梯形AAMNB,

    ∴k=1,
    故答案为1.
    【点睛】
    本题考查反比例函数的性质,k的几何意义.能够将三角形面积进行合理的转换是解题的关键.
    13、10海里.
    【解析】
    本题可以求出甲船行进的距离AC,根据三角函数就可以求出AB,即可求出乙船的路程.
    【详解】
    由已知可得:AC=60×0.5=30海里,
    又∵甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°,
    ∴∠BAC=90°,
    又∵乙船正好到达甲船正西方向的B点,
    ∴∠C=30°,
    ∴AB=AC•tan30°=30×=10海里.
    答:乙船的路程为10海里.
    故答案为10海里.
    【点睛】
    本题主要考查的是解直角三角形的应用-方向角问题及三角函数的定义,理解方向角的定义是解决本题的关键.
    14、50°
    【解析】
    由PA与PB都为圆O的切线,利用切线长定理得到,再利用等边对等角得到一对角相等,由顶角的度数求出底角的度数,再利用弦切角等于夹弧所对的圆周角,可得出,由的度数即可求出的度数.
    【详解】
    解:,PB分别为的切线,
    ,,
    又,

    则.
    故答案为:
    【点睛】
    此题考查了切线长定理,切线的性质,以及等腰三角形的性质,熟练掌握定理及性质是解本题的关键.
    15、x2+x+20(0<x<10) 不存在.
    【解析】
    先连接BP,AB是直径,BP⊥BM,所以有,∠BMP=∠APB=90°,又∠PBM=∠BAP,那么有△PMB∽△PAB,于是PM:PB=PB:AB,可求从而有(0<x<10),再根据二次函数的性质,可求函数的最大值.
    【详解】
    如图所示,连接PB,
    ∵∠PBM=∠BAP,∠BMP=∠APB=90°,
    ∴△PMB∽△PAB,
    ∴PM:PB=PB:AB,

    ∴(0<x<10),

    ∴AP+2PM有最大值,没有最小值,
    ∴y最大值=
    故答案为(0<x<10),,不存在.

    【点睛】
    考查相似三角形的判定与性质,二次函数的最值等,综合性比较强,需要熟练掌握.
    16、
    【解析】
    将点的坐标代入,可以得到-1=,然后解方程,便可以得到k的值.
    【详解】
    ∵反比例函数y=的图象经过点(2,-1),
    ∴-1=
    ∴k=− ;
    故答案为k=−.
    【点睛】
    本题主要考查函数图像上的点满足其解析式,可以结合代入法进行解答
    17、1
    【解析】
    利用对称性可设出E、F的两点坐标,表示出△DEF的面积,可求出k的值.
    【详解】
    解:设AF=a(a<2),则F(a,2),E(2,a),
    ∴FD=DE=2−a,
    ∴S△DEF=DF•DE==,
    解得a=或a=(不合题意,舍去),
    ∴F(,2),
    把点F(,2)代入
    解得:k=1,
    故答案为1.
    【点睛】
    本题主要考查反比例函数与正方形和三角形面积的运用,表示出E和F的坐标是关键.

    三、解答题(共7小题,满分69分)
    18、 (1) (2)① ②
    【解析】
    【分析】(1)根据关联点的定义逐一进行判断即可得;
    (2))①当时,,,,,可以确定此时矩形上的所有点都在抛物线的下方,所以可得,由此可知,从而可得;
    ②由①知,分两种情况画出图形进行讨论即可得.
    【详解】(1),x=2时,y==1,此时P(2,1),则d=1+2=3,符合定义,是关联点;
    ,x=1时,y==,此时P(1,),则d=+=3,符合定义,是关联点;
    ,x=4时,y==4,此时P(4,4),则d=1+=6,不符合定义,不是关联点;
    ,x=0时,y==0,此时P(0,0),则d=4+5=9,不不符合定义,是关联点,
    故答案为;
    (2)①当时,,,,,
    此时矩形上的所有点都在抛物线的下方,
    ∴,
    ∴,
    ∵,
    ∴;
    ②由①,,
    如图2所示时,CF最长,当CF=4时,即=4,解得:t=,

    如图3所示时,DF最长,当DF=4时,即DF==4,解得 t=,

    故答案为
    【点睛】本题考查了新定义题,二次函数的综合,题目较难,读懂新概念,能灵活应用新概念,结合图形解题是关键.
    19、证明见解析
    【解析】
    试题分析:通过全等三角形△ADE≌△CBF的对应角相等证得∠AED=∠CFB,则由平行线的判定证得结论.
    证明:∵平行四边形ABCD中,AD=BC,AD∥BC,∴∠ADE=∠CBF.
    ∵在△ADE与△CBF中,AD=BC,∠ADE=∠CBF, DE=BF,
    ∴△ADE≌△CBF(SAS).∴∠AED=∠CFB.
    ∴AE∥CF.
    20、(1)证明见解析(2)30°(3) QM=
    【解析】
    试题分析:
    (1)连接OP,PB,由已知易证∠OBP=∠OPB=∠QBP,从而可得BP平分∠OBQ,结合BQ⊥CP于点Q,PE⊥AB于点E即可由角平分线的性质得到PQ=PE;
    (2)如下图2,连接OP,则由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,设EF=x,则由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,从而可得AB=,则OP=OA=,结合AE=可得OE=,这样即可得到sin∠OPE=,由此可得∠OPE=30°,则∠C=30°;
    (3)如下图3,连接BG,过点O作OK⊥HB于点K,结合BQ⊥CP,∠OPQ=90°,可得四边形POKQ为矩形.由此可得QK=PO,OK∥CQ从而可得∠KOB=∠C=30°;由已知易证PE=,在Rt△EPO中结合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知条件可得BG=6,∠ABG=60°;过点G作GN⊥QB交QB的延长线于点N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,从而可得解得GN=,BN=3,由此可得QN=12,则在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分线,由此可得QM:GM=QB:GB=9:6由此即可求得QM的长了.
    试题解析:
    (1)如下图1,连接OP,PB,∵CP切⊙O于P,
    ∴OP⊥CP于点P,
    又∵BQ⊥CP于点Q,
    ∴OP∥BQ,
    ∴∠OPB=∠QBP,
    ∵OP=OB,
    ∴∠OPB=∠OBP,
    ∴∠QBP=∠OBP,
    又∵PE⊥AB于点E,
    ∴PQ=PE;

    (2)如下图2,连接,∵CP切⊙O于P,


    ∵PD⊥AB



    在Rt中,∠GAB=30°
    ∴设EF=x,则
    在Rt中,tan∠BFE=3




    ∴在RtPEO中,
    ∴30°;

    (3)如下图3,连接BG,过点O作于K,又BQ⊥CP,
    ∴,
    ∴四边形POKQ为矩形,
    ∴QK=PO,OK//CQ,
    ∴30°,
    ∵⊙O 中PD⊥AB于E ,PD=6 ,AB为⊙O的直径,
    ∴PE= PD= 3,
    根据(2)得,在RtEPO中,,
    ∴,
    ∴OB=QK=PO=6,
    ∴在Rt中, ,
    ∴,
    ∴QB=9,
    在△ABG中,AB为⊙O的直径,
    ∴AGB=90°,
    ∵BAG=30°,
    ∴BG=6,ABG=60°,
    过点G作GN⊥QB交QB的延长线于点N,则∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,
    ∴BN=BQ·cos∠GBQ=3,GN=BQ·sin∠GBQ=,
    ∴QN=QB+BN=12,
    ∴在Rt△QGN中,QG=,
    ∵∠ABG=∠CBQ=60°,
    ∴BM是△BQG的角平分线,
    ∴QM:GM=QB:GB=9:6,
    ∴QM=.

    点睛:解本题第3小题的要点是:(1)作出如图所示的辅助线,结合已知条件和(2)先求得BQ、BG的长及∠CBQ=∠ABG=60°;(2)再过点G作GN⊥QB并交QB的延长线于点N,解出BN和GN的长,这样即可在Rt△QGN中求得QG的长,最后在△BQG中“由角平分线分线段成比例定理”即可列出比例式求得QM的长了.
    21、2.4元/米
    【解析】
    利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可.
    【详解】
    解:设去年用水的价格每立方米元,则今年用水价格为每立方米元
    由题意列方程得:
    解得
    经检验,是原方程的解
    (元/立方米)
    答:今年居民用水的价格为每立方米元.
    【点睛】
    此题主要考查了分式方程的应用,正确表示出用水量是解题关键.
    22、 (1)见解析;(2)2
    【解析】
    (1) 方法一: 连接AC, 利用角平分线判定定理, 证明DA=DC即可;
    方法二: 只要证明△AEB≌△AFD. 可得AB=AD即可解决问题;
    (2) 在Rt△ACF, 根据AF=CF·tan∠ACF计算即可.
    【详解】
    (1)证法一:连接AC,如图.

    ∵AE⊥BC,AF⊥DC,AE=AF,
    ∴∠ACF=∠ACE,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC.
    ∴∠DAC=∠ACB.
    ∴∠DAC=∠DCA,
    ∴DA=DC,
    ∴四边形ABCD是菱形.
    证法二:如图,

    ∵四边形ABCD是平行四边形,
    ∴∠B=∠D.
    ∵AE⊥BC,AF⊥DC,
    ∴∠AEB=∠AFD=90°,
    又∵AE=AF,
    ∴△AEB≌△AFD.
    ∴AB=AD,
    ∴四边形ABCD是菱形.
    (2)连接AC,如图.

    ∵AE⊥BC,AF⊥DC,∠EAF=60°,
    ∴∠ECF=120°,
    ∵四边形ABCD是菱形,
    ∴∠ACF=60°,
    在Rt△CFA中,AF=CF•tan∠ACF=2.
    【点睛】
    本题主要考查三角形的性质及三角函数的相关知识,充分利用已知条件灵活运用各种方法求解可得到答案。
    23、(1)落回到圈的概率;(2)可能性不一样.
    【解析】
    (1)由共有6种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;
    (2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案.
    【详解】
    (1)掷一次骰子有种等可能的结果,只有掷的时,才会落回到圈,
    落回到圈的概率;
    (2)列表得:

    1
    2
    3
    4
    5
    6
    1






    2






    3






    4






    5






    6






    共有种等可能的结果,当两次掷得的数字之和为的倍数,即时,才可能落回到圈,这种情况共有种,
    ∴,
    ∵,
    可能性不一样
    【点睛】
    本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
    24、(1)证明见解析;(2)①∠OCE=45°;②EF =-2.
    【解析】
    【试题分析】(1)根据直线与⊙O相切的性质,得OC⊥CD.
    又因为AD⊥CD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD//OC. ∠DAC=∠OCA.又因为OC=OA,根据等边对等角,得∠OAC=∠OCA.等量代换得:∠DAC=∠OAC.根据角平分线的定义得:AC平分∠DAO.
    (2)①因为 AD//OC,∠DAO=105°,根据两直线平行,同位角相等得,∠EOC=∠DAO=105°,在 中,∠E=30°,利用内角和定理,得:∠OCE=45°.
    ②作OG⊥CE于点G,根据垂径定理可得FG=CG, 因为OC=,∠OCE=45°.等腰直角三角形的斜边是腰长的 倍,得CG=OG=2. FG=2.在Rt△OGE中,∠E=30°,得GE=, 则EF=GE-FG=-2.
    【试题解析】
    (1)∵直线与⊙O相切,∴OC⊥CD.
    又∵AD⊥CD,∴AD//OC.
    ∴∠DAC=∠OCA.
    又∵OC=OA,∴∠OAC=∠OCA.
    ∴∠DAC=∠OAC.
    ∴AC平分∠DAO.
    (2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°
    ∵∠E=30°,∴∠OCE=45°.
    ②作OG⊥CE于点G,可得FG=CG
    ∵OC=,∠OCE=45°.∴CG=OG=2.
    ∴FG=2.
    ∵在Rt△OGE中,∠E=30°,∴GE=.
    ∴EF=GE-FG=-2.

    【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.

    相关试卷

    达标名校2021-2022学年十校联考最后数学试题含解析: 这是一份达标名校2021-2022学年十校联考最后数学试题含解析,共22页。试卷主要包含了在数轴上表示不等式2等内容,欢迎下载使用。

    2022年吉林省白城市洮北区三合乡中学十校联考最后数学试题含解析: 这是一份2022年吉林省白城市洮北区三合乡中学十校联考最后数学试题含解析,共23页。试卷主要包含了已知二次函数等内容,欢迎下载使用。

    2022届吉林省白城市名校十校联考最后数学试题含解析: 这是一份2022届吉林省白城市名校十校联考最后数学试题含解析,共21页。试卷主要包含了答题时请按要求用笔,已知等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map