|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年黑龙江省齐齐哈尔市昂昂溪区中考数学模拟预测题含解析
    立即下载
    加入资料篮
    2021-2022学年黑龙江省齐齐哈尔市昂昂溪区中考数学模拟预测题含解析01
    2021-2022学年黑龙江省齐齐哈尔市昂昂溪区中考数学模拟预测题含解析02
    2021-2022学年黑龙江省齐齐哈尔市昂昂溪区中考数学模拟预测题含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年黑龙江省齐齐哈尔市昂昂溪区中考数学模拟预测题含解析

    展开
    这是一份2021-2022学年黑龙江省齐齐哈尔市昂昂溪区中考数学模拟预测题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则正圆锥侧面展开图的圆心角是( )
    A.90° B.120° C.150° D.180°
    2.下面四个几何体中,左视图是四边形的几何体共有()

    A.1个 B.2个 C.3个 D.4个
    3.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为( )

    A.1 B. C. D.
    4.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点若点D为BC边的中点,点M为线段EF上一动点,则周长的最小值为  

    A.6 B.8 C.10 D.12
    5.某种计算器标价240元,若以8折优惠销售,仍可获利20%,那么这种计算器的进价为(  )
    A.152元 B.156元 C.160元 D.190元
    6.如图,点E是四边形ABCD的边BC延长线上的一点,则下列条件中不能判定AD∥BE的是(  )

    A. B. C. D.
    7.如图,在圆O中,直径AB平分弦CD于点E,且CD=4,连接AC,OD,若∠A与∠DOB互余,则EB的长是( )

    A.2 B.4 C. D.2
    8.某公司第4月份投入1000万元科研经费,计划6月份投入科研经费比4月多500万元.设该公司第5、6个月投放科研经费的月平均增长率为x,则所列方程正确的为( )
    A.1000(1+x)2=1000+500
    B.1000(1+x)2=500
    C.500(1+x)2=1000
    D.1000(1+2x)=1000+500
    9.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.(  )
    A.3,2 B.3,4 C.5,2 D.5,4
    10.如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是(  )

    A. B.2 C. D.2
    11.在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(3,0),在y轴的正半轴上取一点C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是(  )
    A.(0,) B.(,0) C.(0,2) D.(2,0)
    12.若m,n是一元二次方程x2﹣2x﹣1=0的两个不同实数根,则代数式m2﹣m+n的值是(  )
    A.﹣1 B.3 C.﹣3 D.1
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于__________.

    14.甲、乙、丙3名学生随机排成一排拍照,其中甲排在中间的概率是_____.
    15.如图所示是一组有规律的图案,第l个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中的基础图形个数为_______ (用含n的式子表示).

    16.化简:+3=_____.
    17.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是 .
    18.如果,那么代数式的值是______.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)嘉淇在做家庭作业时,不小心将墨汁弄倒,恰好覆盖了题目的一部分:计算:(﹣7)0+|1﹣|+()﹣1﹣□+(﹣1)2018,经询问,王老师告诉题目的正确答案是1.
    (1)求被覆盖的这个数是多少?
    (2)若这个数恰好等于2tan(α﹣15)°,其中α为三角形一内角,求α的值.
    20.(6分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:
    该年级报名参加丙组的人数为 ;该年级报名参加本次活动的总人数 ,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?
    21.(6分)如图,一次函数y=-x+5的图象与反比例函数y= (k≠0)在第一象限的图象交于A(1,n)和B两点.求反比例函数的解析式;在第一象限内,当一次函数y=-x+5的值大于反比例函数y= (k≠0)的值时,写出自变量x的取值范围.

    22.(8分)如图1,在等边三角形中,为中线,点在线段上运动,将线段绕点顺时针旋转,使得点的对应点落在射线上,连接,设(且).

    (1)当时,
    ①在图1中依题意画出图形,并求(用含的式子表示);
    ②探究线段,,之间的数量关系,并加以证明;
    (2)当时,直接写出线段,,之间的数量关系.
    23.(8分)如图,∠A=∠B=30°
    (1)尺规作图:过点C作CD⊥AC交AB于点D;
    (只要求作出图形,保留痕迹,不要求写作法)
    (2)在(1)的条件下,求证:BC2=BD•AB.

    24.(10分) [阅读]我们定义:如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“中边三角形”,把这条边和其边上的中线称为“对应边”.

    [理解]如图1,Rt△ABC是“中边三角形”,∠C=90°,AC和BD是“对应边”,求tanA的值;
    [探究]如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.当β=45°时,若△APQ是“中边三角形”,试求的值.
    25.(10分)2019年我市在“展销会”期间,对周边道路进行限速行驶.道路AB段为监测区,C、D为监测点(如图).已知C、D、B在同一条直线上,且,CD=400米,,.求道路AB段的长;(精确到1米)如果AB段限速为60千米/时,一辆车通过AB段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:,,)

    26.(12分)在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4 的打印纸等,这些矩形的长与宽之比都为:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点 P 为 AB 边上的定点,且 AP=AD. 求证:PD=AB.如图(2),若在“完美矩形“ABCD 的边 BC 上有一动点 E,当的值是多少时,△PDE 的周长最小?如图(3),点 Q 是边 AB 上的定点,且 BQ=BC.已知 AD=1,在(2)的条件下连接 DE 并延长交 AB 的延长线于点 F,连接 CF,G 为 CF 的中点,M、N 分别为线段 QF 和 CD 上的动点,且始终保持 QM=CN,MN 与 DF 相交于点 H,请问 GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.

    27.(12分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.按约定,“小李同学在该天早餐得到两个油饼”是 事件;(可能,必然,不可能)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    试题分析:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,设正圆锥的侧面展开图的圆心角是n°,则=2πr,解得:n=180°.故选D.
    考点:圆锥的计算.
    2、B
    【解析】
    简单几何体的三视图.
    【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B.
    3、C
    【解析】
    连接AE,OD,OE.

    ∵AB是直径, ∴∠AEB=90°.
    又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.
    ∵OA=OD.∴△AOD是等边三角形.∴∠A=60°.
    又∵点E为BC的中点,∠AED=90°,∴AB=AC.
    ∴△ABC是等边三角形,
    ∴△EDC是等边三角形,且边长是△ABC边长的一半2,高是.
    ∴∠BOE=∠EOD=60°,∴和弦BE围成的部分的面积=和弦DE围成的部分的面积.
    ∴阴影部分的面积=.故选C.
    4、C
    【解析】
    连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.
    【详解】
    连接AD,

    ∵△ABC是等腰三角形,点D是BC边的中点,
    ∴AD⊥BC,
    ∴S△ABC=BC•AD=×4×AD=16,解得AD=8,
    ∵EF是线段AC的垂直平分线,
    ∴点C关于直线EF的对称点为点A,
    ∴AD的长为CM+MD的最小值,
    ∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.
    故选C.
    【点睛】
    本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
    5、C
    【解析】
    【分析】设进价为x元,依题意得240×0.8-x=20x℅,解方程可得.
    【详解】设进价为x元,依题意得
    240×0.8-x=20x℅
    解得x=160
    所以,进价为160元.
    故选C
    【点睛】本题考核知识点:列方程解应用题. 解题关键点:找出相等关系.
    6、A
    【解析】
    利用平行线的判定方法判断即可得到结果.
    【详解】
    ∵∠1=∠2,
    ∴AB∥CD,选项A符合题意;
    ∵∠3=∠4,
    ∴AD∥BC,选项B不合题意;
    ∵∠D=∠5,
    ∴AD∥BC,选项C不合题意;
    ∵∠B+∠BAD=180°,
    ∴AD∥BC,选项D不合题意,
    故选A.
    【点睛】
    此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.
    7、D
    【解析】
    连接CO,由直径AB平分弦CD及垂径定理知∠COB=∠DOB,则∠A与∠COB互余,由圆周角定理知∠A=30°,∠COE=60°,则∠OCE=30°,设OE=x,则CO=2x,利用勾股定理即可求出x,再求出BE即可.
    【详解】
    连接CO,∵AB平分CD,
    ∴∠COB=∠DOB,AB⊥CD,CE=DE=2
    ∵∠A与∠DOB互余,
    ∴∠A+∠COB=90°,
    又∠COB=2∠A,
    ∴∠A=30°,∠COE=60°,
    ∴∠OCE=30°,
    设OE=x,则CO=2x,
    ∴CO2=OE2+CE2
    即(2x)2=x2+(2)2
    解得x=2,
    ∴BO=CO=4,
    ∴BE=CO-OE=2.
    故选D.

    【点睛】
    此题主要考查圆内的综合问题,解题的关键是熟知垂径定理、圆周角定理及勾股定理.
    8、A
    【解析】
    设该公司第5、6个月投放科研经费的月平均增长率为x,5月份投放科研经费为1000(1+x),6月份投放科研经费为1000(1+x)(1+x),即可得答案.
    【详解】
    设该公司第5、6个月投放科研经费的月平均增长率为x,
    则6月份投放科研经费1000(1+x)2=1000+500,
    故选A.
    【点睛】
    考查一元二次方程的应用,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
    9、B
    【解析】
    试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.
    考点: 平均数;方差.
    10、A
    【解析】
    试题分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=2,所以EF=.
    解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,
    ∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,
    ∴AB=2EF,DC=DF+CF=8,
    作DH⊥BC于H,
    ∵AD∥BC,∠B=90°,
    ∴四边形ABHD为矩形,
    ∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,
    在Rt△DHC中,DH==2,
    ∴EF=DH=.
    故选A.

    点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.
    11、A
    【解析】
    直接根据△AOC∽△COB得出OC2=OA•OB,即可求出OC的长,即可得出C点坐标.
    【详解】

    如图,连结AC,CB.    
    依△AOC∽△COB的结论可得:OC2=OA×OB,
    即OC2=1×3=3,
    解得:OC=或− (负数舍去),
    故C点的坐标为(0, ).
    故答案选:A.
    【点睛】
    本题考查了坐标与图形性质,解题的关键是熟练的掌握坐标与图形的性质.
    12、B
    【解析】
    把m代入一元二次方程,可得,再利用两根之和,将式子变形后,整理代入,即可求值.
    【详解】
    解:∵若,是一元二次方程的两个不同实数根,
    ∴,


    故选B.
    【点睛】
    本题考查了一元二次方程根与系数的关系,及一元二次方程的解,熟记根与系数关系的公式.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    根据同弧或等弧所对的圆周角相等来求解.
    【详解】
    解:∵∠E=∠ABD,
    ∴tan∠AED=tan∠ABD==.
    故选D.
    【点睛】
    本题利用了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念求解.
    14、
    【解析】
    列举出所有情况,看甲排在中间的情况占所有情况的多少即为所求的概率.
    根据题意,列出甲、乙、丙三个同学排成一排拍照的所有可能:
    甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6种情况,
    只有2种甲在中间,所以甲排在中间的概率是=.
    故答案为;
    点睛:本题主要考查了列举法求概率,用到的知识点为:概率等于所求情况数与总情况数之比,关键是列举出同等可能的所有情况.
    15、3n+1
    【解析】
    试题分析:由图可知每个图案一次增加3个基本图形,第一个图案有4个基本图形,则第n个图案的基础图形有4+3(n-1)=3n+1个
    考点:规律型
    16、
    【解析】
    试题分析:先进行二次根式的化简,然后合并,可得原式=2+=3.
    17、.
    【解析】
    试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.
    由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,
    ∴∠EFC+∠AFB=90°,∵∠B=90°,
    ∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,
    ∴cos∠EFC=,故答案为:.
    考点:轴对称的性质,矩形的性质,余弦的概念.
    18、1
    【解析】
    分析:对所求代数式根据分式的混合运算顺序进行化简,再把变形后整体代入即可.
    详解:




    故答案为1.
    点睛:考查分式的混合运算,掌握运算顺序是解题的关键.注意整体代入法的运用.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)2;(2)α=75°.
    【解析】
    (1)直接利用绝对值的性质以及负指数幂的性质以及零指数幂的性质分别化简得出答案;
    (2)直接利用特殊角的三角函数值计算得出答案.
    【详解】
    解:(1)原式=1+﹣1+﹣□+1=1,
    ∴□=1+﹣1++1﹣1=2;
    (2)∵α为三角形一内角,
    ∴0°<α<180°,
    ∴﹣15°<(α﹣15)°<165°,
    ∵2tan(α﹣15)°=,
    ∴α﹣15°=60°,
    ∴α=75°.
    【点睛】
    此题主要考查了实数运算,正确化简各数是解题关键.
    20、(1)21人;(2)10人,见解析(3)应从甲抽调1名学生到丙组
    【解析】
    (1)参加丙组的人数为21人;
    (2)21÷10%=10人,则乙组人数=10-21-11=10人,
    如图:

    (3)设需从甲组抽调x名同学到丙组,
    根据题意得:3(11-x)=21+x
    解得x=1.
    答:应从甲抽调1名学生到丙组
    (1)直接根据条形统计图获得数据;
    (2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图;
    (3)设需从甲组抽调x名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解
    21、(1);(2)1<x<1.
    【解析】
    (1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;
    (2)一次函数y=-x+5的值大于反比例函数y=,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可.
    【详解】
    解:(1)∵一次函数y=﹣x+5的图象过点A(1,n),
    ∴n=﹣1+5,解得:n=1,
    ∴点A的坐标为(1,1).
    ∵反比例函数y=(k≠0)过点A(1,1),
    ∴k=1×1=1,
    ∴反比例函数的解析式为y=.
    联立,解得:或,
    ∴点B的坐标为(1,1).
    (2)观察函数图象,发现:
    当1<x<1.时,反比例函数图象在一次函数图象下方,
    ∴当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,x的取值范围为1<x<1.
    【点睛】
    本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键.
    22、(1)①;②;(2)
    【解析】
    (1)①先根据等边三角形的性质的,进而得出,最后用三角形的内角和定理即可得出结论;②先判断出,得出,再判断出是底角为30度的等腰三角形,再构造出直角三角形即可得出结论;(2)同②的方法即可得出结论.
    【详解】
    (1)当时,
    ①画出的图形如图1所示,
    ∵为等边三角形,
    ∴.
    ∵为等边三角形的中线
    ∴是的垂直平分线,
    ∵为线段上的点,
    ∴.
    ∵,
    ∴,.
    ∵线段为线段绕点顺时针旋转所得,
    ∴.
    ∴.
    ∴,
    ∴;

    ②;
    如图2,延长到点,使得,连接,作于点.
    ∵,点在上,
    ∴.
    ∵点在的延长线上,,
    ∴.
    ∴.
    又∵,,
    ∴.
    ∴.
    ∵于点,
    ∴,.
    ∵在等边三角形中,为中线,点在上,
    ∴,
    即为底角为的等腰三角形.
    ∴.
    ∴.

    (2)如图3,当时,
    在上取一点使,
    ∵为等边三角形,
    ∴.
    ∵为等边三角形的中线,
    ∵为线段上的点,
    ∴是的垂直平分线,
    ∴.
    ∵,
    ∴,.
    ∵线段为线段绕点顺时针旋转所得,
    ∴.
    ∴.
    ∴,
    又∵,,
    ∴.
    ∴.
    ∵于点,
    ∴,.
    ∵在等边三角形中,为中线,点在上,
    ∴,
    ∴.
    ∴.

    【点睛】
    此题是几何变换综合题,主要考查了等边三角形的性质,三角形的内角和定理,全等三角形的判定和性质,等腰三角形的判定和性质,锐角三角函数,作出辅助线构造出全等三角形是解本题的关键.
    23、见解析
    【解析】
    (1)利用过直线上一点作直线的垂线确定D点即可得;
    (2)根据圆周角定理,由∠ACD=90°,根据三角形的内角和和等腰三角形的性质得到∠DCB=∠A=30°,推出△CDB∽△ACB,根据相似三角形的性质即可得到结论.
    【详解】
    (1)如图所示,CD即为所求;

    (2)∵CD⊥AC,
    ∴∠ACD=90°
    ∵∠A=∠B=30°,
    ∴∠ACB=120°
    ∴∠DCB=∠A=30°,
    ∵∠B=∠B,
    ∴△CDB∽△ACB,
    ∴,
    ∴BC2=BD•AB.
    【点睛】
    考查了等腰三角形的性质和相似三角形的判定和性质和作图:在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
    24、tanA=;综上所述,当β=45°时,若△APQ是“中边三角形”,的值为或.
    【解析】
    (1)由AC和BD是“对应边”,可得AC=BD,设AC=2x,则CD=x,BD=2x,可得∴BC=x,可得tanA===
    (2) 当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,可得AC是QP的垂直平分线.可求得△AEF∽△CEP,=,分两种情况:
    当底边PQ与它的中线AE相等,即AE=PQ时,
    ==,
    ∴=;
    当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,
    (3)作QN⊥AP于N,可得tan∠APQ===,
    tan∠APE===,
    ∴=,
    【详解】
    解:[理解]∵AC和BD是“对应边”,
    ∴AC=BD,
    设AC=2x,则CD=x,BD=2x,
    ∵∠C=90°,
    ∴BC===x,
    ∴tanA===;
    [探究]若β=45°,当点P在AB上时,△APQ是等腰直角三角形,不可能是“中边三角形”,
    如图2,当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,
    ∵PC=QC,∠ACB=∠ACD,
    ∴AC是QP的垂直平分线,
    ∴AP=AQ,
    ∵∠CAB=∠ACP,∠AEF=∠CEP,
    ∴△AEF∽△CEP,
    ∴===,
    ∵PE=CE,
    ∴=,
    分两种情况:
    当底边PQ与它的中线AE相等,即AE=PQ时,
    ==,
    ∴=;
    当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,
    如图3,作QN⊥AP于N,
    ∴MN=AN=PM=QM,
    ∴QN=MN,
    ∴ntan∠APQ===,
    ∴ta∠APE===,
    ∴=,
    综上所述,当β=45°时,若△APQ是“中边三角形”,的值为或.

    【点睛】本题是一道相 似形综合运用的试题, 考查了相 似三角形的判定及性质的运用, 勾股定理的运用, 等腰直角三角形的性质的运用, 等腰三角形的性质的运用, 锐角三角形函数值的运用, 解答时灵活运用三角函数值建立方程求解是解答的关键.
    25、 (1)AB≈1395 米;(2)没有超速.
    【解析】
    (1)先根据tan∠ADC=2求出AC,再根据∠ABC=35°结合正弦值求解即可(2)根据速度的计算公式求解即可.
    【详解】
    解:(1)∵AC⊥BC,
    ∴∠C=90°,
    ∵tan∠ADC==2,
    ∵CD=400,
    ∴AC=800,
    在Rt△ABC中,∵∠ABC=35°,AC=800,
    ∴AB==≈1395 米;
    (2)∵AB=1395,
    ∴该车的速度==55.8km/h<60千米/时,
    故没有超速.
    【点睛】
    此题重点考察学生对三角函数值的实际应用,熟练掌握三角函数值的实际应用是解题的关键.
    26、(1)证明见解析(2) (3)
    【解析】
    (1)根据题中“完美矩形”的定义设出AD与AB,根据AP=AD,利用勾股定理表示出PD,即可得证;
    (2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,表示出AB与CD,由AB-AP表示出BP,由对称的性质得到BP=BP′,由平行得比例,求出所求比值即可;
    (3)GH=,理由为:由(2)可知BF=BP=AB-AP,由等式的性质得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形对应边相等得到FH=DH,再由G为CF中点,得到HG为中位线,利用中位线性质求出GH的长即可.
    【详解】
    (1)在图1中,设AD=BC=a,则有AB=CD=a,
    ∵四边形ABCD是矩形,
    ∴∠A=90°,
    ∵PA=AD=BC=a,
    ∴PD==a,
    ∵AB=a,
    ∴PD=AB;
    (2)如图,作点P关于BC的对称点P′,
    连接DP′交BC于点E,此时△PDE的周长最小,

    设AD=PA=BC=a,则有AB=CD=a,
    ∵BP=AB-PA,
    ∴BP′=BP=a-a,
    ∵BP′∥CD,
    ∴ ;
    (3)GH=,理由为:
    由(2)可知BF=BP=AB-AP,
    ∵AP=AD,
    ∴BF=AB-AD,
    ∵BQ=BC,
    ∴AQ=AB-BQ=AB-BC,
    ∵BC=AD,
    ∴AQ=AB-AD,
    ∴BF=AQ,
    ∴QF=BQ+BF=BQ+AQ=AB,
    ∵AB=CD,
    ∴QF=CD,
    ∵QM=CN,
    ∴QF-QM=CD-CN,即MF=DN,
    ∵MF∥DN,
    ∴∠NFH=∠NDH,
    在△MFH和△NDH中,

    ∴△MFH≌△NDH(AAS),
    ∴FH=DH,
    ∵G为CF的中点,
    ∴GH是△CFD的中位线,
    ∴GH=CD=×2=.
    【点睛】
    此题属于相似综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判定与性质,熟练掌握相似三角形的性质是解本题的关键.
    27、(1)不可能事件;(2).
    【解析】
    试题分析:(1)根据随机事件的概念即可得“小李同学在该天早餐得到两个油饼”是不可能事件;(2)根据题意画出树状图,再由概率公式求解即可.
    试题解析:(1)小李同学在该天早餐得到两个油饼”是不可能事件;
    (2)树状图法

    即小张同学得到猪肉包和油饼的概率为.
    考点:列表法与树状图法.

    相关试卷

    黑龙江省齐齐哈尔市讷河市市级名校2022年中考数学模拟预测题含解析: 这是一份黑龙江省齐齐哈尔市讷河市市级名校2022年中考数学模拟预测题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    黑龙江省齐齐哈尔市昂昂溪区市级名校2021-2022学年中考试题猜想数学试卷含解析: 这是一份黑龙江省齐齐哈尔市昂昂溪区市级名校2021-2022学年中考试题猜想数学试卷含解析,共22页。试卷主要包含了抛物线y=3,下列计算正确的是等内容,欢迎下载使用。

    2022届黑龙江省齐齐哈尔市昂昂溪区市级名校中考猜题数学试卷含解析: 这是一份2022届黑龙江省齐齐哈尔市昂昂溪区市级名校中考猜题数学试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,下列命题中,正确的是,若点A,点A等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map