![2021-2022学年湖北省襄阳市第七中学中考押题数学预测卷含解析01](http://img-preview.51jiaoxi.com/2/3/13285635/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年湖北省襄阳市第七中学中考押题数学预测卷含解析02](http://img-preview.51jiaoxi.com/2/3/13285635/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年湖北省襄阳市第七中学中考押题数学预测卷含解析03](http://img-preview.51jiaoxi.com/2/3/13285635/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021-2022学年湖北省襄阳市第七中学中考押题数学预测卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列由左边到右边的变形,属于因式分解的是( ).
A.(x+1)(x-1)=x2-1
B.x2-2x+1=x(x-2)+1
C.a2-b2=(a+b)(a-b)
D.mx+my+nx+ny=m(x+y)+n(x+y)
2.下列几何体中,三视图有两个相同而另一个不同的是( )
A.(1)(2) B.(2)(3) C.(2)(4) D.(3)(4)
3.已知正比例函数的图象经过点,则此正比例函数的关系式为( ).
A. B. C. D.
4.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=( )
A.90°-α B.90°+ α C. D.360°-α
5.如图,把△ABC剪成三部分,边AB,BC,AC放在同一直线上,点O都落在直线MN上,直线MN∥AB,则点O是△ABC的( )
A.外心 B.内心 C.三条中线的交点 D.三条高的交点
6.下列函数中,当x>0时,y值随x值增大而减小的是( )
A.y=x2 B.y=x﹣1 C. D.
7.如图,AD为△ABC的中线,点E为AC边的中点,连接DE,则下列结论中不一定成立的是( )
A.DC=DE B.AB=2DE C.S△CDE=S△ABC D.DE∥AB
8.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是( )
A.AE=6cm B.
C.当0<t≤10时, D.当t=12s时,△PBQ是等腰三角形
9.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )
A.①② B.②③ C.①③ D.②④
10.为了纪念物理学家费米,物理学界以费米(飞米)作为长度单位.已知1飞米等于0.000000000000001米,把0.000000000000001这个数用科学记数法表示为( )
A.1×10﹣15 B.0.1×10﹣14 C.0.01×10﹣13 D.0.01×10﹣12
11.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为( )
A.1.239×10﹣3g/cm3 B.1.239×10﹣2g/cm3
C.0.1239×10﹣2g/cm3 D.12.39×10﹣4g/cm3
12.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.计算的结果为 .
14.如图①,在矩形ABCD中,对角线AC与BD交于点O,动点P从点A出发,沿AB匀速运动,到达点B时停止,设点P所走的路程为x,线段OP的长为y,若y与x之间的函数图象如图②所示,则矩形ABCD的周长为_____.
15.已知一次函数y=ax+b,且2a+b=1,则该一次函数图象必经过点_____.
16.从正n边形 一个顶点引出的对角线将它分成了8个三角形,则它的每个内角的度数是______ .
17.要使式子有意义,则的取值范围是__________.
18.如图,在中,CM平分交AB于点M,过点M作交AC于点N,且MN平分,若,则BC的长为______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷每人必选且只选一种,在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
这次统计共抽查了______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为______;
将条形统计图补充完整;
该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名.
20.(6分)如图,在平面直角坐标系中,函数的图象经过点,直线与x轴交于点.求的值;过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D.
①当时,判断线段PD与PC的数量关系,并说明理由;
②若,结合函数的图象,直接写出n的取值范围.
21.(6分)如图1,抛物线y=ax2+(a+2)x+2(a≠0),与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.
(1)求抛物线的解析式;
(2)若PN:PM=1:4,求m的值;
(3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O逆时针旋转得到OP2,旋转角为α(0°<α<90°),连接AP2、BP2,求AP2+的最小值.
22.(8分)如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为( )
A.40° B.55° C.65° D.75°
23.(8分)关于x的一元二次方程mx2+(3m﹣2)x﹣6=1.
(1)当m为何值时,方程有两个不相等的实数根;
(2)当m为何整数时,此方程的两个根都为负整数.
24.(10分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.
25.(10分)为给邓小平诞辰周年献礼,广安市政府对城市建设进行了整改,如图所示,已知斜坡长60米,坡角(即)为,,现计划在斜坡中点处挖去部分斜坡,修建一个平行于水平线的休闲平台和一条新的斜坡(下面两个小题结果都保留根号).
若修建的斜坡BE的坡比为:1,求休闲平台的长是多少米?一座建筑物距离点米远(即米),小亮在点测得建筑物顶部的仰角(即)为.点、、、,在同一个平面内,点、、在同一条直线上,且,问建筑物高为多少米?
26.(12分)全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:
本次抽样调查了 个家庭;将图①中的条形图补充完整;学习时间在2~2.5小时的部分对应的扇形圆心角的度数是 度;若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?
27.(12分)如图1,定义:在直角三角形ABC中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα==,根据上述角的余切定义,解下列问题:
(1)如图1,若BC=3,AB=5,则ctanB=_____;
(2)ctan60°=_____;
(3)如图2,已知:△ABC中,∠B是锐角,ctan C=2,AB=10,BC=20,试求∠B的余弦cosB的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.
【详解】
解:A、B、D三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C选项符合因式分解的定义,
故选择C.
【点睛】
本题考查了因式分解的定义,牢记定义是解题关键.
2、B
【解析】
根据三视图的定义即可解答.
【详解】
正方体的三视图都是正方形,故(1)不符合题意;
圆柱的主视图、左视图都是矩形,俯视图是圆,故(2)符合题意;
圆锥的主视图、左视图都是三角形,俯视图是圆形,故(3)符合题意;
三棱锥主视图是、左视图是,俯视图是三角形,故(4)不符合题意;
故选B.
【点睛】
本题考查了简单几何体的三视图,熟知三视图的定义是解决问题的关键.
3、A
【解析】
根据待定系数法即可求得.
【详解】
解:∵正比例函数y=kx的图象经过点(1,﹣3),
∴﹣3=k,即k=﹣3,
∴该正比例函数的解析式为:y=﹣3x.
故选A.
【点睛】
此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
4、C
【解析】
试题分析:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,
∵PB和PC分别为∠ABC、∠BCD的平分线,
∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,
则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.
故选C.
考点:1.多边形内角与外角2.三角形内角和定理.
5、B
【解析】
利用平行线间的距离相等,可知点到、、的距离相等,然后可作出判断.
【详解】
解:如图,过点作于,于,于.
图1
,
(夹在平行线间的距离相等).
如图:过点作于,作于E,作于.
由题意可知: ,,,
∴ ,
∴图中的点是三角形三个内角的平分线的交点,
点是的内心,
故选B.
【点睛】
本题考查平行线间的距离,角平分线定理,三角形的内心,解题的关键是判断出.
6、D
【解析】
A、、∵y=x2,∴对称轴x=0,当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x的增大而减小,故此选项错误
B、k>0,y随x增大而增大,故此选项错误
C、B、k>0,y随x增大而增大,故此选项错误
D、y=(x>0),反比例函数,k>0,故在第一象限内y随x的增大而减小,故此选项正确
7、A
【解析】
根据三角形中位线定理判断即可.
【详解】
∵AD为△ABC的中线,点E为AC边的中点,
∴DC=BC,DE=AB,
∵BC不一定等于AB,
∴DC不一定等于DE,A不一定成立;
∴AB=2DE,B一定成立;
S△CDE=S△ABC,C一定成立;
DE∥AB,D一定成立;
故选A.
【点睛】
本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
8、D
【解析】
(1)结论A正确,理由如下:
解析函数图象可知,BC=10cm,ED=4cm,
故AE=AD﹣ED=BC﹣ED=10﹣4=6cm.
(2)结论B正确,理由如下:
如图,连接EC,过点E作EF⊥BC于点F,
由函数图象可知,BC=BE=10cm,,
∴EF=1.∴.
(3)结论C正确,理由如下:
如图,过点P作PG⊥BQ于点G,
∵BQ=BP=t,∴.
(4)结论D错误,理由如下:
当t=12s时,点Q与点C重合,点P运动到ED的中点,
设为N,如图,连接NB,NC.
此时AN=1,ND=2,由勾股定理求得:NB=,NC=.
∵BC=10,
∴△BCN不是等腰三角形,即此时△PBQ不是等腰三角形.
故选D.
9、B
【解析】
A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,
当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;
B、∵四边形ABCD是平行四边形,
∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;
C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;
D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.
故选C.
10、A
【解析】
根据科学记数法的表示方法解答.
【详解】
解:把这个数用科学记数法表示为.
故选:.
【点睛】
此题重点考查学生对科学记数法的应用,熟练掌握小于0的数用科学记数法表示法是解题的关键.
11、A
【解析】
试题分析:0.001219=1.219×10﹣1.故选A.
考点:科学记数法—表示较小的数.
12、B
【解析】
主视图、俯视图是分别从物体正面、上面看,所得到的图形.
【详解】
综合主视图和俯视图,底层最少有个小立方体,第二层最少有个小立方体,因此搭成这个几何体的小正方体的个数最少是个.
故选:B.
【点睛】
此题考查由三视图判断几何体,解题关键在于识别图形
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
直接把分子相加减即可.
【详解】
=,故答案为:.
【点睛】
本题考查了分式的加减法,关键是要注意通分及约分的灵活应用.
14、1
【解析】
分析:根据点P的移动规律,当OP⊥BC时取最小值2,根据矩形的性质求得矩形的长与宽,易得该矩形的周长.
详解:∵当OP⊥AB时,OP最小,且此时AP=4,OP=2,
∴AB=2AP=8,AD=2OP=6,
∴C矩形ABCD=2(AB+AD)=2×(8+6)=1.
故答案为1.
点睛:本题考查了动点问题的函数图象,关键是根据所给函数图象和点的运动轨迹判断出AP=4,OP=2.
15、(2,1)
【解析】
∵一次函数y=ax+b,
∴当x=2,y=2a+b,
又2a+b=1,
∴当x=2,y=1,
即该图象一定经过点(2,1).
故答案为(2,1).
16、144°
【解析】
根据多边形内角和公式计算即可.
【详解】
解:由题知,这是一个10边形,根据多边形内角和公式:
每个内角等于.
故答案为:144°.
【点睛】
此题重点考察学生对多边形内角和公式的应用,掌握计算公式是解题的关键.
17、
【解析】
根据二次根式被开方数必须是非负数的条件可得关于x的不等式,解不等式即可得.
【详解】
由题意得:
2-x≥0,
解得:x≤2,
故答案为x≤2.
18、1
【解析】
根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.
【详解】
∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,
∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,
∴∠ACB=2∠B,NM=NC,
∴∠B=30°,
∵AN=1,
∴MN=2,
∴AC=AN+NC=3,
∴BC=1,
故答案为1.
【点睛】
本题考查含30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)100,108°;(2)答案见解析;(3)600人.
【解析】
(1)先利用QQ计算出宗人数,再用百分比计算度数;(2)按照扇形图补充条形图;(3)利用微信沟通所占百分比计算总人数.
【详解】
解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,
∴此次共抽查了:20÷20%=100人.
喜欢用QQ沟通所占比例为:,
∴QQ的扇形圆心角的度数为:360°×=108°.
(2)喜欢用短信的人数为:100×5%=5人
喜欢用微信的人数为:100-20-5-30-5=40
补充图形,如图所示:
(3)喜欢用微信沟通所占百分比为:×100%=40%.
∴该校共有1500名学生,估计该校最喜欢用“微信”进行沟通的学生有:1500×40%=600人 .
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
20、(1).(2)①判断:.理由见解析;②或.
【解析】
(1)利用代点法可以求出参数 ;
(2)①当时,即点P的坐标为,即可求出点的坐标,于是得出;
②根据①中的情况,可知或再结合图像可以确定的取值范围;
【详解】
解:(1)∵函数的图象经过点,
∴将点代入,即 ,得:
∵直线与轴交于点,
∴将点代入,即 ,得:
(2)①判断: .理由如下:
当时,点P的坐标为,如图所示:
∴点C的坐标为 ,点D的坐标为
∴ , .
∴.
②由①可知当时
所以由图像可知,当直线往下平移的时也符合题意,即 ,
得;
当时,点P的坐标为
∴点C的坐标为 ,点D的坐标为
∴ ,
∴
当 时,即,也符合题意,
所以 的取值范围为:或 .
【点睛】
本题主要考查了反比例函数和一次函数,熟练求反比例函数和一次函数解析式的方法、坐标与线段长度的转化和数形结合思想是解题关键.
21、(1);(2)m=3;(3)
【解析】
(1)本题需先根据图象过A点,代入即可求出解析式;(2)由△OAB∽△PAN可用m表示出PN,且可表示出PM,由条件可得到关于m的方程,则可求得m的值;(3)在y轴上取一点Q,使,可证的△P2OB∽△QOP2,则可求得Q点坐标,则可把AP2+BP2转换为AP2+QP2,利用三角形三边关系可知当A、P2、Q三点在一条线上时,有最小值,则可求出答案.
【详解】
解:(1)∵A(4,0)在抛物线上,
∴0=16a+4(a+2)+2,解得a=﹣,
∴抛物线的解析式为y=;
(2)∵
∴令x=0可得y=2,
∴OB=2,
∵OP=m,
∴AP=4﹣m,
∵PM⊥x轴,
∴△OAB∽△PAN,
∴,
∴,
∴,
∵M在抛物线上,
∴PM=+2,
∵PN:MN=1:3,
∴PN:PM=1:4,
∴,
解得m=3或m=4(舍去);
(3)在y轴上取一点Q,使,如图,
由(2)可知P1(3,0),且OB=2,
∴,且∠P2OB=∠QOP2,
∴△P2OB∽△QOP2,
∴,
∴当Q(0,)时,QP2=,
∴AP2+BP2=AP2+QP2≥AQ,
∴当A、P2、Q三点在一条线上时,AP2+QP2有最小值,
∵A(4,0),Q(0,),
∴AQ==,
即AP2+BP2的最小值为
【点睛】
本题考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里表示三角形的面积及线段和最小值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,难度相对较大.
22、C.
【解析】
试题分析:由作图方法可得AG是∠CAB的角平分线,
∵∠CAB=50°,∴∠CAD=∠CAB=25°,∵∠C=90°,∴∠CDA=90°﹣25°=65°,
故选C.
考点:作图—基本作图.
23、 (1) m≠1且m≠;(2) m=-1或m=-2.
【解析】
(1)由方程有两个不相等的实数根,可得△>1,列出关于m的不等式解之可得答案;
(2) 解方程,得:,,由m为整数,且方程的两个根均为负整数可得m的值.
【详解】
解:(1) △=-4ac=(3m-2)+24m=(3m+2)≥1
当m≠1且m≠时,方程有两个不相等实数根.
(2)解方程,得:,,
m为整数,且方程的两个根均为负整数,
m=-1或m=-2.
m=-1或m=-2时,此方程的两个根都为负整数
【点睛】
本题主要考查利用一元二次方程根的情况求参数.
24、(1)y=﹣3x2+252x﹣1(2≤x≤54);(2)商场每天销售这种商品的销售利润不能达到500元.
【解析】
(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.
(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.
【详解】
(1)由题意得:每件商品的销售利润为(x﹣2)元,那么m件的销售利润为y=m(x﹣2).
又∵m=162﹣3x,∴y=(x﹣2)(162﹣3x),即y=﹣3x2+252x﹣1.
∵x﹣2≥0,∴x≥2.
又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求关系式为y=﹣3x2+252x﹣1(2≤x≤54).
(2)由(1)得y=﹣3x2+252x﹣1=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.
∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.
【点睛】
本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.
25、(1)m (2)米
【解析】
分析:(1)由三角函数的定义,即可求得AM与AF的长,又由坡度的定义,即可求得NF的长,继而求得平台MN的长;(2)在RT△BMK中,求得BK=MK=50米,从而求得 EM=84米;在RT△HEM中, 求得,继而求得米.
详解:
(1)∵MF∥BC,∴∠AMF=∠ABC=45°,
∵斜坡AB长米,M是AB的中点,∴AM=(米),
∴AF=MF=AM•cos∠AMF=(米),
在中,∵斜坡AN的坡比为∶1,∴,
∴,
∴MN=MF-NF=50-=.
(2)在RT△BMK中,BM=,∴BK=MK=50(米),
EM=BG+BK=34+50=84(米)
在RT△HEM中,∠HME=30°,∴,
∴,
∴(米)
答:休闲平台DE的长是米;建筑物GH高为米.
点睛:本题考查了坡度坡角的问题以及俯角仰角的问题.解题的关键是根据题意构造直角三角形,将实际问题转化为解直角三角形的问题;掌握数形结合思想与方程思想在题中的运用.
26、 (1)200;(2)见解析;(3)36;(4)该社区学习时间不少于1小时的家庭约有2100个.
【解析】
(1)根据1.5~2小时的圆心角度数求出1.5~2小时所占的百分比,再用1.5~2小时的人数除以所占的百分比,即可得出本次抽样调查的总家庭数;
(2)用抽查的总人数乘以学习0.5-1小时的家庭所占的百分比求出学习0.5-1小时的家庭数,再用总人数减去其它家庭数,求出学习2-2.5小时的家庭数,从而补全统计图;
(3)用360°乘以学习时间在2~2.5小时所占的百分比,即可求出学习时间在2~2.5小时的部分对应的扇形圆心角的度数;
(4)用该社区所有家庭数乘以学习时间不少于1小时的家庭数所占的百分比即可得出答案.
【详解】
解:(1)本次抽样调查的家庭数是:30÷=200(个);
故答案为200;
(2)学习0.5﹣1小时的家庭数有:200×=60(个),
学习2﹣2.5小时的家庭数有:200﹣60﹣90﹣30=20(个),
补图如下:
(3)学习时间在2~2.5小时的部分对应的扇形圆心角的度数是:360×=36°;
故答案为36;
(4)根据题意得:
3000×=2100(个).
答:该社区学习时间不少于1小时的家庭约有2100个.
【点睛】
本题考查条形统计图、扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.
27、(1);(2);(3).
【解析】
试题分析:(1)先利用勾股定理计算出AC=4,然后根据余切的定义求解;
(2)根据余切的定义得到ctan60°=,然后把tan60°=代入计算即可;
(3)作AH⊥BC于H,如图2,先在Rt△ACH中利用余切的定义得到ctanC==2,则可设AH=x,CH=2x,BH=BC﹣CH=20﹣2x,接着再在Rt△ABH中利用勾股定理得到(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),所以BH=8,然后根据余弦的定义求解.
解:(1)∵BC=3,AB=5,
∴AC==4,
∴ctanB==;
(2)ctan60°===;
(3)作AH⊥BC于H,如图2,
在Rt△ACH中,ctanC==2,
设AH=x,则CH=2x,
∴BH=BC﹣CH=20﹣2x,
在Rt△ABH中,∵BH2+AH2=AB2,
∴(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),
∴BH=20﹣2×6=8,
∴cosB===.
考点:解直角三角形.
湖北省黄冈市浠水县巴河中学2021-2022学年中考押题数学预测卷含解析: 这是一份湖北省黄冈市浠水县巴河中学2021-2022学年中考押题数学预测卷含解析,共19页。试卷主要包含了在平面直角坐标系中,已知点A,方程x2﹣3x+2=0的解是等内容,欢迎下载使用。
湖北省武汉第二初级中学2021-2022学年中考押题数学预测卷含解析: 这是一份湖北省武汉第二初级中学2021-2022学年中考押题数学预测卷含解析,共18页。
湖北省襄阳市徐寨中学2021-2022学年中考数学模拟预测题含解析: 这是一份湖北省襄阳市徐寨中学2021-2022学年中考数学模拟预测题含解析,共19页。试卷主要包含了计算的正确结果是,下列计算中,错误的是等内容,欢迎下载使用。