2021-2022学年黑龙江省哈尔滨市五常市二河乡二河中学中考数学五模试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如右图,⊿ABC内接于⊙O,若∠OAB=28°则∠C的大小为( )
A.62° B.56° C.60° D.28°
2.要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是( )
A.两点之间的所有连线中,线段最短
B.经过两点有一条直线,并且只有一条直线
C.直线外一点与直线上各点连接的所有线段中,垂线段最短
D.经过一点有且只有一条直线与已知直线垂直
3.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0; ②﹣1≤a≤; ③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为( )
A.1个 B.2个 C.3个 D.4个
4.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为( )
A.2πcm B.4πcm C.6πcm D.8πcm
5.的倒数是( )
A.﹣ B.2 C.﹣2 D.
6.若一个三角形的两边长分别为5和7,则该三角形的周长可能是( )
A.12 B.14 C.15 D.25
7.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )
A. B. C. D.
8.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为( )
A.30° B.45° C.60° D.75°
9.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( ).
A. B. C. D.
10.下面几何的主视图是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=的图象上,则k的值为_____.
12.若反比例函数y=的图象位于第一、三象限,则正整数k的值是_____.
13.在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax1相交于A,B两点(点B在第一象限),点C在AB的延长线上.
(1)已知a=1,点B的纵坐标为1.如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,AC的长为__.
(1)如图1,若BC=AB,过O,B,C三点的抛物线L3,顶点为P,开口向下,对应函数的二次项系数为a3, =__.
14.已知一组数据-3,x,-2, 3,1,6的众数为3,则这组数据的中位数为______.
15.如图,在边长为1的正方形格点图中,B、D、E为格点,则∠BAC的正切值为_____.
16.如图,在△ABC中,AB=AC=2,BC=1.点E为BC边上一动点,连接AE,作∠AEF=∠B,EF与△ABC的外角∠ACD的平分线交于点F.当EF⊥AC时,EF的长为_______.
17.如图,直线y=k1x+b与双曲线交于A、B两点,其横坐标分别为1和5,则不等式k1x<+b的解集是 ▲ .
三、解答题(共7小题,满分69分)
18.(10分)在平面直角坐标系xOy中,若抛物线顶点A的横坐标是,且与y轴交于点,点P为抛物线上一点.
求抛物线的表达式;
若将抛物线向下平移4个单位,点P平移后的对应点为如果,求点Q的坐标.
19.(5分)如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C.求双曲线的解析式;点P在x轴上,如果△ACP的面积为3,求点P的坐标.
20.(8分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.
21.(10分)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.
22.(10分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长.
23.(12分)如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G.
(1)求四边形OEBF的面积;
(2)求证:OG•BD=EF2;
(3)在旋转过程中,当△BEF与△COF的面积之和最大时,求AE的长.
24.(14分)为节约用水,某市居民生活用水按阶梯式水价计量,水价分为三个阶梯,价格表如下表所示:
某市自来水销售价格表
类别
月用水量
(立方米)
供水价格
(元/立方米)
污水处理费
(元/立方米)
居民生活用水
阶梯一
0~18(含18)
1.90
1.00
阶梯二
18~25(含25)
2.85
阶梯三
25以上
5.70
(注:居民生活用水水价=供水价格+污水处理费)
(1)当居民月用水量在18立方米及以下时,水价是_____元/立方米.
(2)4月份小明家用水量为20立方米,应付水费为:
18×(1.90+1.00)+2×(2.85+1.00)=59.90(元)
预计6月份小明家的用水量将达到30立方米,请计算小明家6月份的水费.
(3)为了节省开支,小明家决定每月用水的费用不超过家庭收入的1%,已知小明家的平均月收入为7530元,请你为小明家每月用水量提出建议
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
连接OB.
在△OAB中,OA=OB(⊙O的半径),
∴∠OAB=∠OBA(等边对等角);
又∵∠OAB=28°,
∴∠OBA=28°;
∴∠AOB=180°-2×28°=124°;
而∠C=∠AOB(同弧所对的圆周角是所对的圆心角的一半),
∴∠C=62°;
故选A
2、B
【解析】
本题要根据过平面上的两点有且只有一条直线的性质解答.
【详解】
根据两点确定一条直线.
故选:B.
【点睛】
本题考查了“两点确定一条直线”的公理,难度适中.
3、C
【解析】
①由抛物线的顶点横坐标可得出b=-2a,进而可得出4a+2b=0,结论①错误;
②利用一次函数图象上点的坐标特征结合b=-2a可得出a=-,再结合抛物线与y轴交点的位置即可得出-1≤a≤-,结论②正确;
③由抛物线的顶点坐标及a<0,可得出n=a+b+c,且n≥ax2+bx+c,进而可得出对于任意实数m,a+b≥am2+bm总成立,结论③正确;
④由抛物线的顶点坐标可得出抛物线y=ax2+bx+c与直线y=n只有一个交点,将直线下移可得出抛物线y=ax2+bx+c与直线y=n-1有两个交点,进而可得出关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.
【详解】
:①∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
∴-=1,
∴b=-2a,
∴4a+2b=0,结论①错误;
②∵抛物线y=ax2+bx+c与x轴交于点A(-1,0),
∴a-b+c=3a+c=0,
∴a=-.
又∵抛物线y=ax2+bx+c与y轴的交点在(0,2),(0,3)之间(包含端点),
∴2≤c≤3,
∴-1≤a≤-,结论②正确;
③∵a<0,顶点坐标为(1,n),
∴n=a+b+c,且n≥ax2+bx+c,
∴对于任意实数m,a+b≥am2+bm总成立,结论③正确;
④∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
∴抛物线y=ax2+bx+c与直线y=n只有一个交点,
又∵a<0,
∴抛物线开口向下,
∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,
∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.
故选C.
【点睛】
本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.
4、B
【解析】
首先连接OC,AO,由切线的性质,可得OC⊥AB,根据已知条件可得:OA=2OC,进而求出∠AOC的度数,则圆心角∠AOB可求,根据弧长公式即可求出劣弧AB的长.
【详解】
解:如图,连接OC,AO,
∵大圆的一条弦AB与小圆相切,
∴OC⊥AB,
∵OA=6,OC=3,
∴OA=2OC,
∴∠A=30°,
∴∠AOC=60°,
∴∠AOB=120°,
∴劣弧AB的长= =4π,
故选B.
【点睛】
本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键.
5、B
【解析】
根据乘积是1的两个数叫做互为倒数解答.
【详解】
解:∵×1=1
∴的倒数是1.
故选B.
【点睛】
本题考查了倒数的定义,是基础题,熟记概念是解题的关键.
6、C
【解析】
先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.
【详解】
∴三角形的两边长分别为5和7,
∴2<第三条边<12,
∴5+7+2<三角形的周长<5+7+12,
即14<三角形的周长<24,
故选C.
【点睛】
本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.
7、B
【解析】
由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.
故选B.
8、C
【解析】
试题分析:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C.
考点:1矩形;2平行线的性质.
9、B
【解析】
朝上的数字为偶数的有3种可能,再根据概率公式即可计算.
【详解】
依题意得P(朝上一面的数字是偶数)=
故选B.
【点睛】
此题主要考查概率的计算,解题的关键是熟知概率公式进行求解.
10、B
【解析】
主视图是从物体正面看所得到的图形.
【详解】
解:从几何体正面看
故选B.
【点睛】
本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
根据题意和旋转的性质,可以得到点C的坐标,把点C坐标代入反比例函数y=中,即可求出k的值.
【详解】
∵OB在x轴上,∠ABO=90°,点A的坐标为(2,4),∴OB=2,AB=4
∵将△AOB绕点A逆时针旋转90°,∴AD=4,CD=2,且AD//x轴
∴点C的坐标为(6,2),
∵点O的对应点C恰好落在反比例函数y=的图象上,
∴k=2,
故答案为1.
【点睛】
本题考查反比例函数图象上点的坐标特征、坐标与图形的变化-旋转,解答本题的关键是明确题意,利用数形结合的思想解答.
12、1.
【解析】
由反比例函数的性质列出不等式,解出k的范围,在这个范围写出k的整数解则可.
【详解】
解:∵反比例函数的图象在一、三象限,
∴2﹣k>0,即k<2.
又∵k是正整数,
∴k的值是:1.
故答案为:1.
【点睛】
本题考查了反比例函数的性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.
13、4 ﹣
【解析】
解:(1)当a=1时,抛物线L的解析式为:y=x1,
当y=1时,1=x1,
∴x=±,
∵B在第一象限,
∴A(﹣,1),B(,1),
∴AB=1,
∵向右平移抛物线L使该抛物线过点B,
∴AB=BC=1,
∴AC=4;
(1)如图1,设抛物线L3与x轴的交点为G,其对称轴与x轴交于Q,过B作BK⊥x轴于K,
设OK=t,则AB=BC=1t,
∴B(t,at1),
根据抛物线的对称性得:OQ=1t,OG=1OQ=4t,
∴O(0,0),G(4t,0),
设抛物线L3的解析式为:y=a3(x﹣0)(x﹣4t),
y=a3x(x﹣4t),
∵该抛物线过点B(t,at1),
∴at1=a3t(t﹣4t),
∵t≠0,
∴a=﹣3a3,
∴=﹣,
故答案为(1)4;(1)﹣.
点睛:本题考查二次函数的图象和性质.熟练掌握二次函数的性质是解题的关键.
14、
【解析】
分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
详解:∵-3,x,-1, 3,1,6的众数是3,
∴x=3,
先对这组数据按从小到大的顺序重新排序-3、-1、1、3、3、6位于最中间的数是1,3,
∴这组数的中位数是=1.
故答案为: 1.
点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
15、
【解析】
根据圆周角定理可得∠BAC=∠BDC,然后求出tan∠BDC的值即可.
【详解】
由图可得,∠BAC=∠BDC,
∵⊙O在边长为1的网格格点上,
∴BE=3,DB=4,
则tan∠BDC==
∴tan∠BAC=
故答案为
【点睛】
本题考查的知识点是圆周角定理及其推论及解直角三角形,解题的关键是熟练的掌握圆周角定理及其推论及解直角三角形.
16、1+
【解析】
当AB=AC,∠AEF=∠B时,∠AEF=∠ACB,当EF⊥AC时,∠ACB+∠CEF=90°=∠AEF+∠CEF,即可得到AE⊥BC,依据Rt△CFG≌Rt△CFH,可得CH=CG=,再根据勾股定理即可得到EF的长.
【详解】
解:如图,
当AB=AC,∠AEF=∠B时,∠AEF=∠ACB,
当EF⊥AC时,∠ACB+∠CEF=90°=∠AEF+∠CEF,
∴AE⊥BC,
∴CE=BC=2,
又∵AC=2,
∴AE=1,EG==,
∴CG==,
作FH⊥CD于H,
∵CF平分∠ACD,
∴FG=FH,而CF=CF,
∴Rt△CFG≌Rt△CFH,
∴CH=CG=,
设EF=x,则HF=GF=x-,
∵Rt△EFH中,EH2+FH2=EF2,
∴(2+)2+(x-)2=x2,
解得x=1+,
故答案为1+.
【点睛】
本题主要考查了角平分线的性质,勾股定理以及等腰三角形的性质的运用,解决问题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
17、-2<x<-1或x>1.
【解析】
不等式的图象解法,平移的性质,反比例函数与一次函数的交点问题,对称的性质.
不等式k1x<+b的解集即k1x-b<的解集,根据不等式与直线和双曲线解析式的关系,可以理解为直线y=k1x-b在双曲线下方的自变量x的取值范围即可.
而直线y=k1x-b的图象可以由y=k1x+b向下平移2b个单位得到,如图所示.根据函数图象的对称性可得:直线y=k1x-b和y=k1x+b与双曲线的交点坐标关于原点对称.
由关于原点对称的坐标点性质,直线y=k1x-b图象与双曲线图象交点A′、B′的横坐标为A、B两点横坐标的相反数,即为-1,-2.
∴由图知,当-2<x<-1或x>1时,直线y=k1x-b图象在双曲线图象下方.
∴不等式k1x<+b的解集是-2<x<-1或x>1.
三、解答题(共7小题,满分69分)
18、为;点Q的坐标为或.
【解析】
依据抛物线的对称轴方程可求得b的值,然后将点B的坐标代入线可求得c的值,即可求得抛物线的表达式;由平移后抛物线的顶点在x轴上可求得平移的方向和距离,故此,然后由点,轴可得到点Q和P关于x对称,可求得点Q的纵坐标,将点Q的纵坐标代入平移后的解析式可求得对应的x的值,则可得到点Q的坐标.
【详解】
抛物线顶点A的横坐标是,
,即,解得.
.
将代入得:,
抛物线的解析式为.
抛物线向下平移了4个单位.
平移后抛物线的解析式为,.
,
点O在PQ的垂直平分线上.
又轴,
点Q与点P关于x轴对称.
点Q的纵坐标为.
将代入得:,解得:或.
点Q的坐标为或.
【点睛】
本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是解题的关键.
19、(1)(2)(-6,0)或(-2,0).
【解析】
分析:(1)把A点坐标代入直线解析式可求得m的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;
(2)设P(t,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于t的方程,则可求得P点坐标.
详解:(1)把A点坐标代入y=x+2,可得:3=m+2,解得:m=2,∴A(2,3).∵A点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=;
(2)在y=x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵点P在x轴上,∴可设P点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=×3|t+4|.∵△ACP的面积为3,∴×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).
点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.
20、(1);(2).
【解析】
试题分析:(1)、3个等只有一个控制楼梯,则概率就是1÷3;(2)、根据题意画出树状图,然后根据概率的计算法则得出概率.
试题解析:(1)、小晗任意按下一个开关,正好楼梯灯亮的概率是:
(2)、画树状图得:
结果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)
∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,
∴正好客厅灯和走廊灯同时亮的概率是=.
考点:概率的计算.
21、20°
【解析】
依据三角形内角和定理可得∠FGH=55°,再根据GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根据∠FHG是△EFH的外角,即可得出∠EFB=55°-35°=20°.
【详解】
∵∠EFG=90°,∠E=35°,
∴∠FGH=55°,
∵GE平分∠FGD,AB∥CD,
∴∠FHG=∠HGD=∠FGH=55°,
∵∠FHG是△EFH的外角,
∴∠EFB=55°﹣35°=20°.
【点睛】
本题考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.
22、作图见解析;CE=4.
【解析】
分析:利用数形结合的思想解决问题即可.
详解:如图所示,矩形ABCD和△ABE即为所求;CE=4.
点睛:本题考查作图-应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题.
23、(1);(2)详见解析;(3)AE=.
【解析】
(1)由四边形ABCD是正方形,直角∠MPN,易证得△BOE≌△COF(ASA),则可证得S四边形OEBF=S△BOC=S正方形ABCD;
(2)易证得△OEG∽△OBE,然后由相似三角形的对应边成比例,证得OG•OB=OE2,再利用OB与BD的关系,OE与EF的关系,即可证得结论;
(3)首先设AE=x,则BE=CF=1﹣x,BF=x,继而表示出△BEF与△COF的面积之和,然后利用二次函数的最值问题,求得AE的长.
【详解】
(1)∵四边形ABCD是正方形,
∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,
∴∠BOF+∠COF=90°,
∵∠EOF=90°,
∴∠BOF+∠COE=90°,
∴∠BOE=∠COF,
在△BOE和△COF中,
∴△BOE≌△COF(ASA),
∴S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD
(2)证明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,
∴△OEG∽△OBE,
∴OE:OB=OG:OE,
∴OG•OB=OE2,
∵
∴OG•BD=EF2;
(3)如图,过点O作OH⊥BC,
∵BC=1,
∴
设AE=x,则BE=CF=1﹣x,BF=x,
∴S△BEF+S△COF=BE•BF+CF•OH
∵
∴当时,S△BEF+S△COF最大;
即在旋转过程中,当△BEF与△COF的面积之和最大时,
【点睛】
本题属于四边形的综合题,主要考查了正方形的性质,旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理以及二次函数的最值问题.注意掌握转化思想的应用是解此题的关键.
24、(1)1.90;(2)112.65元;(3)当小明家每月的用水量不要超过24立方米时,水费就不会超过他们家庭总收入的1%.
【解析】
试题分析:
(1)由表中数据可知,当用水量在18立方米及以下时,水价为1.9元/立方米;
(2)由题意可知小明家6月份的水费是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);
(3)由已知条件可知,用水量为18立方米时,应交水费52.2元,当用水量为25立方米时,应交水费79.15元,而小明家计划的水费不超过75.3元,由此可知他们家的用水量不会超过25立方米,设他们家的用水量为x立方米,则由题意可得:18×(1.9+1)+(x-18)×(2.85+1)75.3,解得:x24,即小明家每月的用水量不要超过24立方米.
试题解析:
(1)由表中数据可知,当用水量在18立方米及以下时,水价为1.9元/立方米;
(2)由题意可得:
小明家6月份的水费是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);
(3)由题意可知,当用水量为18立方米时,应交水费52.2元,当用水量为25立方米时,应交水费79.15元,而小明家计划的水费不超过75.3元,由此可知他们家的用水量不超过18立方米,而不足25立方米,设他们家的用水量为x立方米,则由题意可得:
18×(1.9+1)+(x-18)×(2.85+1)75.3,解得:x24,
∴当小明家每月的用水量不要超过24立方米时,水费就不会超过他们家庭总收入的1%.
2023-2024学年黑龙江省哈尔滨市五常市二河乡二河中学九年级数学第一学期期末监测试题含答案: 这是一份2023-2024学年黑龙江省哈尔滨市五常市二河乡二河中学九年级数学第一学期期末监测试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,已知是关于的反比例函数,则,下列运算中,正确的是等内容,欢迎下载使用。
2023-2024学年黑龙江省哈尔滨市五常市二河乡二河中学八年级数学第一学期期末综合测试模拟试题含答案: 这是一份2023-2024学年黑龙江省哈尔滨市五常市二河乡二河中学八年级数学第一学期期末综合测试模拟试题含答案,共7页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。
黑龙江省哈尔滨市五常市二河乡二河中学2022-2023学年数学七下期末综合测试试题含答案: 这是一份黑龙江省哈尔滨市五常市二河乡二河中学2022-2023学年数学七下期末综合测试试题含答案,共7页。试卷主要包含了下列事件中,必然事件是,已知点A的坐标为,已知一次函数y=等内容,欢迎下载使用。