2021-2022学年河北省石家庄市高邑县中考数学模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,将△ABC 绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点 A′恰好落在 BC 边的延长线上,下列结论错误的是( )
A.∠BCB′=∠ACA′ B.∠ACB=2∠B
C.∠B′CA=∠B′AC D.B′C 平分∠BB′A′
2.如右图,⊿ABC内接于⊙O,若∠OAB=28°则∠C的大小为( )
A.62° B.56° C.60° D.28°
3.近似数精确到( )
A.十分位 B.个位 C.十位 D.百位
4.实数的相反数是( )
A. B. C. D.
5.在,0,-1,这四个数中,最小的数是( )
A. B.0 C. D.-1
6.某运动会颁奖台如图所示,它的主视图是( )
A. B. C. D.
7.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是( )
A.30和 20 B.30和25 C.30和22.5 D.30和17.5
8.下列式子中,与互为有理化因式的是( )
A. B. C. D.
9.如果(,均为非零向量),那么下列结论错误的是( )
A.// B.-2=0 C.= D.
10.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为 .
12.甲、乙两点在边长为100m的正方形ABCD上按顺时针方向运动,甲的速度为5m/秒,乙的速度为10m/秒,甲从A点出发,乙从CD边的中点出发,则经过__秒,甲乙两点第一次在同一边上.
13.已知矩形ABCD,AD>AB,以矩形ABCD的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD的其他边上,则可以画出的不同的等腰三角形的个数为_______________.
14.因式分解:x2y-4y3=________.
15.一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别.现从袋子中随机摸出一个球,则它是黑球的概率是______.
16.如图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要___枚棋子.
17.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为_____.
三、解答题(共7小题,满分69分)
18.(10分)计算:(﹣2)0+()﹣1+4cos30°﹣|4﹣|
19.(5分)如图,是的外接圆,是的直径,过圆心的直线于,交于,是的切线,为切点,连接,.
(1)求证:直线为的切线;
(2)求证:;
(3)若,,求的长.
20.(8分)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.1°,∠PBA=26.1.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A,B为参照点,结果精确到0.1米)
(参考数据:sin38.1°=0.62,cos38.1°=0.78,tan38.1°=0.80,sin26.1°=0.41,cos26.1°=0.89,tan26.1°=0.10)
21.(10分)如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.求证:MD=MC;若⊙O的半径为5,AC=4,求MC的长.
22.(10分)如图,在平面直角坐标系中,抛物线的图象经过和两点,且与轴交于,直线是抛物线的对称轴,过点的直线与直线相交于点,且点在第一象限.
(1)求该抛物线的解析式;
(2)若直线和直线、轴围成的三角形面积为6,求此直线的解析式;
(3)点在抛物线的对称轴上,与直线和轴都相切,求点的坐标.
23.(12分)已知抛物线y=x2+bx+c(b,c是常数)与x轴相交于A,B两点(A在B的左侧),与y轴交于点C.
(1)当A(﹣1,0),C(0,﹣3)时,求抛物线的解析式和顶点坐标;
(2)P(m,t)为抛物线上的一个动点.
①当点P关于原点的对称点P′落在直线BC上时,求m的值;
②当点P关于原点的对称点P′落在第一象限内,P′A2取得最小值时,求m的值及这个最小值.
24.(14分)已知,关于x的方程x2﹣mx+m2﹣1=0,
(1)不解方程,判断此方程根的情况;
(2)若x=2是该方程的一个根,求m的值.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
根据旋转的性质求解即可.
【详解】
解:根据旋转的性质,A:∠与∠均为旋转角,故∠=∠,故A正确;
B:,,
又
,
,故B正确;
D:,
B′C平分∠BB′A′,故D正确.
无法得出C中结论,
故答案:C.
【点睛】
本题主要考查三角形旋转后具有的性质,注意灵活运用各条件
2、A
【解析】
连接OB.
在△OAB中,OA=OB(⊙O的半径),
∴∠OAB=∠OBA(等边对等角);
又∵∠OAB=28°,
∴∠OBA=28°;
∴∠AOB=180°-2×28°=124°;
而∠C=∠AOB(同弧所对的圆周角是所对的圆心角的一半),
∴∠C=62°;
故选A
3、C
【解析】
根据近似数的精确度:近似数5.0×102精确到十位.
故选C.
考点:近似数和有效数字
4、D
【解析】
根据相反数的定义求解即可.
【详解】
的相反数是-,
故选D.
【点睛】
本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.
5、D
【解析】
试题分析:因为负数小于0,正数大于0,正数大于负数,所以在,0,-1,这四个数中,最小的数是-1,故选D.
考点:正负数的大小比较.
6、C
【解析】
从正面看到的图形如图所示:
,
故选C.
7、C
【解析】
将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得.
【详解】
将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,
所以该组数据的众数为30、中位数为=22.5,
故选:C.
【点睛】
此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
8、B
【解析】
直接利用有理化因式的定义分析得出答案.
【详解】
∵()(,)
=12﹣2,
=10,
∴与互为有理化因式的是:,
故选B.
【点睛】
本题考查了有理化因式,如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式. 单项二次根式的有理化因式是它本身或者本身的相反数;其他代数式的有理化因式可用平方差公式来进行分步确定.
9、B
【解析】
试题解析:向量最后的差应该还是向量. 故错误.
故选B.
10、B
【解析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形.
【详解】
解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;
B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;
C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;
D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.
故选:B.
【点睛】
本题重点考查三视图的定义以及考查学生的空间想象能力.
二、填空题(共7小题,每小题3分,满分21分)
11、5
【解析】
试题分析:根据图形可知圆锥的侧面展开图的弧长为2π×10÷2=10π(cm),因此圆锥的底面半径为10π÷2π=5(cm),因此圆锥的高为:=5(cm).
考点:圆锥的计算
12、1
【解析】
试题分析:设x秒时,甲乙两点相遇.根据题意得:10x-5x=250,解得:x=50,
相遇时甲走了250m,乙走了500米, 则根据题意推得第一次在同一边上时可以为1.
13、8
【解析】
根据题意作出图形即可得出答案,
【详解】
如图,AD>AB,△CDE1,△ABE2,△ABE3,△BCE4,△CDE5,△ABE6,△ADE7,△CDE8,为等腰三角形,故有8个满足题意得点.
【点睛】
此题主要考查矩形的对称性,解题的关键是根据题意作出图形.
14、y(x++2y)(x-2y)
【解析】
首先提公因式,再利用平方差进行分解即可.
【详解】
原式.
故答案是:y(x+2y)(x-2y).
【点睛】
考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
15、
【解析】
根据概率的概念直接求得.
【详解】
解:4÷6=.
故答案为:.
【点睛】
本题用到的知识点为:概率=所求情况数与总情况数之比.
16、1.
【解析】
根据题意分析可得:第1个图案中棋子的个数5个,第2个图案中棋子的个数5+6=11个,…,每个图形都比前一个图形多用6个,继而可求出第30个“小屋子”需要的棋子数.
【详解】
根据题意分析可得:第1个图案中棋子的个数5个.
第2个图案中棋子的个数5+6=11个.
….
每个图形都比前一个图形多用6个.
∴第30个图案中棋子的个数为5+29×6=1个.
故答案为1.
【点睛】
考核知识点:图形的规律.分析出一般数量关系是关键.
17、2
【解析】
过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,
【详解】
解:连接OB,OA′,AA′,
∵AA′关于直线MN对称,
∴
∵∠AMN=40°,
∴∠A′ON=80°,∠BON=40°,
∴∠A′OB=120°,
过O作OQ⊥A′B于Q,
在Rt△A′OQ中,OA′=2,
∴A′B=2A′Q=
即PA+PB的最小值.
【点睛】
本题考查轴对称求最小值问题及解直角三角形,根据轴对称的性质准确作图是本题的解题关键.
三、解答题(共7小题,满分69分)
18、4
【解析】
直接利用零指数幂的性质以及负指数幂的性质和特殊角的三角函数值、绝对值的性质分别化简进而得出答案.
【详解】
(﹣2)0+()﹣1+4cos30°﹣|4﹣|
=1+3+4×﹣(4﹣2)
=4+2﹣4+2
=4.
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键.
19、(1)证明见解析;(2)证明见解析;(3)1.
【解析】
(1)连接OA,由OP垂直于AB,利用垂径定理得到D为AB的中点,即OP垂直平分AB,可得出AP=BP,再由OA=OB,OP=OP,利用SSS得出三角形AOP与三角形BOP全等,由PA为圆的切线,得到OA垂直于AP,利用全等三角形的对应角相等及垂直的定义得到OB垂直于BP,即PB为圆O的切线;
(2)由一对直角相等,一对公共角,得出三角形AOD与三角形OAP相似,由相似得比例,列出关系式,由OA为EF的一半,等量代换即可得证.
【详解】
(1)连接OB,
∵PB是⊙O的切线,
∴∠PBO=90°.
∵OA=OB,BA⊥PO于D,
∴AD=BD,∠POA=∠POB.
又∵PO=PO,
∴△PAO≌△PBO.
∴∠PAO=∠PBO=90°,
∴直线PA为⊙O的切线.
(2)由(1)可知,,
,
,
=90,
,
,
,即,
是直径,
是半径
,
,
,
整理得;
(3)是中点,是中点,
是的中位线,
,
,
,
是直角三角形,
在中,,
,
,
,
,则,
、是半径,
,
在中,,,
由勾股定理得:
,即,
解得:或(舍去),
,
.
【点睛】
本题考查了切线的判定与性质,相似及全等三角形的判定与性质以及锐角三角函数关系等知识,熟练掌握切线的判定与性质是解本题的关键.
20、49.2米
【解析】
设PD=x米,在Rt△PAD中表示出AD,在Rt△PDB中表示出BD,再由AB=80.0米,可得出方程,解出即可得出PD的长度,继而也可确定小桥在小道上的位置.
【详解】
解:设PD=x米,
∵PD⊥AB,∴∠ADP=∠BDP=90°.
在Rt△PAD中,,∴.
在Rt△PBD中,,∴.
又∵AB=80.0米,∴,解得:x≈24.6,即PD≈24.6米.
∴DB=2x=49.2米.
答:小桥PD的长度约为24.6米,位于AB之间距B点约49.2米.
21、(1)证明见解析;(2)MC=.
【解析】
【分析】(1)连接OC,利用切线的性质证明即可;
(2)根据相似三角形的判定和性质以及勾股定理解答即可.
【详解】(1)连接OC,
∵CN为⊙O的切线,
∴OC⊥CM,∠OCA+∠ACM=90°,
∵OM⊥AB,
∴∠OAC+∠ODA=90°,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠ACM=∠ODA=∠CDM,
∴MD=MC;
(2)由题意可知AB=5×2=10,AC=4,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴BC==2,
∵∠AOD=∠ACB,∠A=∠A,
∴△AOD∽△ACB,
∴,即,
可得:OD=2.5,
设MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,
解得:x=,
即MC=.
【点睛】本题考查了切线的判定和性质、相似三角形的判定和性质、勾股定理等知识,准确添加辅助线,正确寻找相似三角形是解决问题的关键.
22、(1);(2);(3)或.
【解析】
(1)根据图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),可利用待定系数法求出二次函数解析式;
(2)根据直线AB与抛物线的对称轴和x轴围成的三角形面积为6,得出AC,BC的长,得出B点的坐标,即可利用待定系数法求出一次函数解析式;
(3)利用三角形相似求出△ABC∽△PBF,即可求出圆的半径,即可得出P点的坐标.
【详解】
(1)抛物线的图象经过,,,
把,,代入得:
解得:,
抛物线解析式为;
(2)抛物线改写成顶点式为,
抛物线对称轴为直线,
∴对称轴与轴的交点C的坐标为
,
,
设点B的坐标为,,
则,
,
∴
∴点B的坐标为,
设直线解析式为:,
把,代入得:,
解得:,
直线解析式为:.
(3)①∵当点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,
设⊙P与AB相切于点F,与x轴相切于点C,如图1;
∴PF⊥AB,AF=AC,PF=PC,
∵AC=1+2=3,BC=4,
∴AB==5,AF=3,
∴BF=2,
∵∠FBP=∠CBA,
∠BFP=∠BCA=90,
∴△ABC∽△PBF,
∴,
∴,
解得:,
∴点P的坐标为(2,);
②设⊙P与AB相切于点F,与轴相切于点C,如图2:
∴PF⊥AB,PF=PC,
∵AC=3,BC=4, AB=5,
∵∠FBP=∠CBA,
∠BFP=∠BCA=90,
∴△ABC∽△PBF,
∴,
∴,
解得:,
∴点P的坐标为(2,-6),
综上所述,与直线和都相切时,
或.
【点睛】
本题考查了二次函数综合题,涉及到用待定系数法求一函数的解析式、二次函数的解析式及相似三角形的判定和性质、切线的判定和性质,根据题意画出图形,利用数形结合求解是解答此题的关键.
23、(1)抛物线的解析式为y=x3﹣3x﹣1,顶点坐标为(1,﹣4);(3)①m=;②P′A3取得最小值时,m的值是,这个最小值是.
【解析】
(1)根据A(﹣1,3),C(3,﹣1)在抛物线y=x3+bx+c(b,c是常数)的图象上,可以求得b、c的值;
(3)①根据题意可以得到点P′的坐标,再根据函数解析式可以求得点B的坐标,进而求得直线BC的解析式,再根据点P′落在直线BC上,从而可以求得m的值;
②根据题意可以表示出P′A3,从而可以求得当P′A3取得最小值时,m的值及这个最小值.
【详解】
解:(1)∵抛物线y=x3+bx+c(b,c是常数)与x轴相交于A,B两点,与y轴交于点C,A(﹣1,3),C(3,﹣1),∴,解得:,∴该抛物线的解析式为y=x3﹣3x﹣1.
∵y=x3﹣3x﹣1=(x﹣1)3﹣4,∴抛物线的顶点坐标为(1,﹣4);
(3)①由P(m,t)在抛物线上可得:t=m3﹣3m﹣1.
∵点P和P′关于原点对称,∴P′(﹣m,﹣t),当y=3时,3=x3﹣3x﹣1,解得:x1=﹣1,x3=1,由已知可得:点B(1,3).
∵点B(1,3),点C(3,﹣1),设直线BC对应的函数解析式为:y=kx+d,,解得:,∴直线BC的直线解析式为y=x﹣1.
∵点P′落在直线BC上,∴﹣t=﹣m﹣1,即t=m+1,∴m3﹣3m﹣1=m+1,解得:m=;
②由题意可知,点P′(﹣m,﹣t)在第一象限,∴﹣m>3,﹣t>3,∴m<3,t<3.
∵二次函数的最小值是﹣4,∴﹣4≤t<3.
∵点P(m,t)在抛物线上,∴t=m3﹣3m﹣1,∴t+1=m3﹣3m,过点P′作P′H⊥x轴,H为垂足,有H(﹣m,3).
又∵A(﹣1,3),则P′H3=t3,AH3=(﹣m+1)3.在Rt△P′AH中,P′A3=AH3+P′H3,∴P′A3=(﹣m+1)3+t3=m3﹣3m+1+t3=t3+t+4=(t+)3+,∴当t=﹣时,P′A3有最小值,此时P′A3=,∴=m3﹣3m﹣1,解得:m=.
∵m<3,∴m=,即P′A3取得最小值时,m的值是,这个最小值是.
【点睛】
本题是二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.
24、(1)证明见解析;(2)m=2或m=1.
【解析】
(1)由△=(-m)2-4×1×(m2-1)=4>0即可得;
(2)将x=2代入方程得到关于m的方程,解之可得.
【详解】
(1)∵△=(﹣m)2﹣4×1×(m2﹣1)
=m2﹣m2+4
=4>0,
∴方程有两个不相等的实数根;
(2)将x=2代入方程,得:4﹣2m+m2﹣1=0,
整理,得:m2﹣8m+12=0,
解得:m=2或m=1.
【点睛】
本题考查了根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)将x=2代入原方程求出m值.
2022-2023学年河北省石家庄市高邑县九年级(上)期末数学试卷(含解析): 这是一份2022-2023学年河北省石家庄市高邑县九年级(上)期末数学试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2021-2022学年河北省石家庄市高邑县八年级(下)期末数学试卷(含解析): 这是一份2021-2022学年河北省石家庄市高邑县八年级(下)期末数学试卷(含解析),共23页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2021-2022学年河北省石家庄市高邑县七年级(下)期中数学试卷(含解析): 这是一份2021-2022学年河北省石家庄市高邑县七年级(下)期中数学试卷(含解析),共16页。试卷主要包含了…8米.将0,【答案】D,【答案】C,【答案】A等内容,欢迎下载使用。