![2021-2022学年广西省梧州市达标名校中考猜题数学试卷含解析01](http://img-preview.51jiaoxi.com/2/3/13282995/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年广西省梧州市达标名校中考猜题数学试卷含解析02](http://img-preview.51jiaoxi.com/2/3/13282995/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年广西省梧州市达标名校中考猜题数学试卷含解析03](http://img-preview.51jiaoxi.com/2/3/13282995/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021-2022学年广西省梧州市达标名校中考猜题数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.某市从今年1月1日起调整居民用水价格,每立方米水费上涨 .小丽家去年12月份的水费是15元,而今年5月的水费则是10元.已知小丽家今年5月的用水量比去年12月的用水量多5m1.求该市今年居民用水的价格.设去年居民用水价格为x元/m1,根据题意列方程,正确的是( )
A. B.
C. D.
2.如果y=++3,那么yx的算术平方根是( )
A.2 B.3 C.9 D.±3
3.若,则的值为( )
A.12 B.2 C.3 D.0
4.如图,3个形状大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角为60°,A、B、C都在格点上,点D在过A、B、C三点的圆弧上,若也在格点上,且∠AED=∠ACD,则∠AEC 度数为 ( )
A.75° B.60° C.45° D.30°
5.不等式4-2x>0的解集在数轴上表示为( )
A. B. C. D.
6.如图,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,则BC的长度为( )
A. B. C.3 D.
7.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为( )
A.4.995×1011 B.49.95×1010
C.0.4995×1011 D.4.995×1010
8.cos60°的值等于( )
A.1 B. C. D.
9.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是( )
A.30° B.40° C.50° D.60°
10.如图,在平面直角坐标系中,△ABC与△A1B1C1是以点P为位似中心的位似图形,且顶点都在格点上,则点P的坐标为( )
A.(﹣4,﹣3) B.(﹣3,﹣4) C.(﹣3,﹣3) D.(﹣4,﹣4)
二、填空题(共7小题,每小题3分,满分21分)
11.一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是_____.
12.把多项式9x3﹣x分解因式的结果是_____.
13.不等式≥-1的正整数解为________________.
14.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是________.
15.如图,ΔABC中,∠ACB=90°,∠ABC=25°,以点C为旋转中心顺时针旋转后得到ΔA′B′C′,且点A在A′B′上,则旋转角为________________°.
16.对于函数,我们定义(m、n为常数).
例如,则.
已知:.若方程有两个相等实数根,则m的值为__________.
17.在△ABC中,∠C=90°,若tanA=,则sinB=______.
三、解答题(共7小题,满分69分)
18.(10分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:
(1)甲乙两地相距 千米,慢车速度为 千米/小时.
(2)求快车速度是多少?
(3)求从两车相遇到快车到达甲地时y与x之间的函数关系式.
(4)直接写出两车相距300千米时的x值.
19.(5分)问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=1.点P是AC上的一个动点,过点P作MN⊥AC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上).设AP的长为x(0≤x≤4),△AMN的面积为y.
建立模型:(1)y与x的函数关系式为:,
解决问题:(1)为进一步研究y随x变化的规律,小明想画出此函数的图象.请你补充列表,并在如图的坐标系中画出此函数的图象:
x | 0 | 1 | 1 | 3 | 4 | ||||
y | 0 |
|
|
| 0 |
(3)观察所画的图象,写出该函数的两条性质: .
20.(8分)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)
21.(10分)漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:
请将以上两幅统计图补充完整;若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有_ ▲ 人达标;若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?
22.(10分)计算:
(1)(2)2﹣|﹣4|+3﹣1×6+20;
(2).
23.(12分)阅读材料:各类方程的解法
求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.
用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.问题:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;拓展:用“转化”思想求方程的解;应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.
24.(14分)如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC于点D.
如果BE=15,CE=9,求EF的长;证明:①△CDF∽△BAF;②CD=CE;探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说明你的理由.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
解:设去年居民用水价格为x元/cm1,根据题意列方程:
,故选A.
2、B
【解析】
解:由题意得:x﹣2≥0,2﹣x≥0,解得:x=2,∴y=1,则yx=9,9的算术平方根是1.故选B.
3、A
【解析】
先根据得出,然后利用提公因式法和完全平方公式对进行变形,然后整体代入即可求值.
【详解】
∵,
∴,
∴.
故选:A.
【点睛】
本题主要考查整体代入法求代数式的值,掌握完全平方公式和整体代入法是解题的关键.
4、B
【解析】
将圆补充完整,利用圆周角定理找出点E的位置,再根据菱形的性质即可得出△CME为等边三角形,进而即可得出∠AEC的值.
【详解】
将圆补充完整,找出点E的位置,如图所示.
∵弧AD所对的圆周角为∠ACD、∠AEC,
∴图中所标点E符合题意.
∵四边形∠CMEN为菱形,且∠CME=60°,
∴△CME为等边三角形,
∴∠AEC=60°.
故选B.
【点睛】
本题考查了菱形的性质、等边三角形的判定依据圆周角定理,根据圆周角定理结合图形找出点E的位置是解题的关键.
5、D
【解析】
根据解一元一次不等式基本步骤:移项、系数化为1可得.
【详解】
移项,得:-2x>-4,
系数化为1,得:x<2,
故选D.
【点睛】
考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
6、A
【解析】
∵∠AED=∠B,∠A=∠A
∴△ADE∽△ACB
∴,
∵DE=6,AB=10,AE=8,
∴,
解得BC=.
故选A.
7、D
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.
【详解】
将499.5亿用科学记数法表示为:4.995×1.
故选D.
【点睛】
此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
8、A
【解析】
根据特殊角的三角函数值直接得出结果.
【详解】
解:cos60°=
故选A.
【点睛】
识记特殊角的三角函数值是解题的关键.
9、C
【解析】
由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.
【详解】
∵∠B=70°,∠BAC=30°
∴∠ACB=80°
∵将△ABC绕点C顺时针旋转得△EDC.
∴AC=CE,∠ACE=∠ACB=80°
∴∠CAE=∠AEC=50°
故选C.
【点睛】
本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.
10、A
【解析】
延长A1A、B1B和C1C,从而得到P点位置,从而可得到P点坐标.
【详解】
如图,点P的坐标为(-4,-3).
故选A.
【点睛】
本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求出答案.
【详解】
画树状图得:
∵共有9种等可能的结果,两次摸出的球都是红球的由4种情况,
∴两次摸出的球都是红球的概率是,
故答案为.
【点睛】
本题主要考查了求随机事件概率的方法,解本题的要点在于根据题意画出树状图,从而求出答案.
12、x(3x+1)(3x﹣1)
【解析】
提取公因式分解多项式,再根据平方差公式分解因式,从而得到答案.
【详解】
9x3-x=x(9x2-1)=x(3x+1)(3x-1),故答案为x(3x+1)(3x-1).
【点睛】
本题主要考查了因式分解以及平方差公式,解本题的要点在于熟知多项式分解因式的相关方法.
13、1, 2, 1.
【解析】
去分母,移项,合并同类项,系数化成1即可求出不等式的解集,根据不等式的解集即可求出答案.
【详解】
,
∴1-x≥-2,
∴-x≥-1,
∴x≤1,
∴不等式的正整数解是1,2,1,
故答案为:1,2,1.
【点睛】
本题考查了解一元一次不等式和一元一次不等式的整数解,关键是求出不等式的解集.
14、
【解析】
解:连接AG,由旋转变换的性质可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,
∴DG=DC﹣CG=1,则AG==,
∵ ,∠ABG=∠CBE,
∴△ABG∽△CBE,
∴,
解得,CE=,
故答案为.
【点睛】
本题考查的是旋转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.
15、50度
【解析】
由将△ACB绕点C顺时针旋转得到△A′B′C′,即可得△ACB≌△A′B′C′,则可得∠A'=∠BAC,△AA'C是等腰三角形,又由△ACB中,∠ACB=90°,∠ABC=25°,即可求得∠A'、∠B'AB的度数,即可求得∠ACB'的度数,继而求得∠B'CB的度数.
【详解】
∵将△ACB绕点C顺时针旋转得到,
∴△ACB≌,
∴∠A′=∠BAC,AC=CA′,
∴∠BAC=∠CAA′,
∵△ACB中,∠ACB=90°,∠ABC=25°,
∴∠BAC=90∘−∠ABC=65°,
∴∠BAC=∠CAA′=65°,
∴∠B′AB=180°−65°−65°=50°,
∴∠ACB′=180°−25°−50°−65°=40°,
∴∠B′CB=90°−40°=50°.
故答案为50.
【点睛】
此题考查了旋转的性质、直角三角形的性质以及等腰三角形的性质.此题难度不大,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.
16、
【解析】
分析:根据题目中所给定义先求,再利用根与系数关系求m值.
详解:由所给定义知,,若
=0,
解得m=.
点睛:一元二次方程的根的判别式是,
△=b2-4ac,a,b,c分别是一元二次方程中二次项系数、一次项系数和常数项.
△>0说明方程有两个不同实数解,
△=0说明方程有两个相等实数解,
△<0说明方程无实数解.
实际应用中,有两种题型(1)证明方程实数根问题,需要对△的正负进行判断,可能是具体的数直接可以判断,也可能是含字母的式子,一般需要配方等技巧.
17、
【解析】
分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.
详解:如图所示:
∵∠C=90°,tanA=,
∴设BC=x,则AC=2x,故AB=x,
则sinB=.
故答案为: .
点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.
三、解答题(共7小题,满分69分)
18、(1)10, 1;(2)快车速度是2千米/小时;(3)从两车相遇到快车到达甲地时y与x之间的函数关系式为y=150x﹣10;(4)当x=2小时或x=4小时时,两车相距300千米.
【解析】
(1)由当x=0时y=10可得出甲乙两地间距,再利用速度=两地间距÷慢车行驶的时间,即可求出慢车的速度;
(2)设快车的速度为a千米/小时,根据两地间距=两车速度之和×相遇时间,即可得出关于a的一元一次方程,解之即可得出结论;
(3)分别求出快车到达甲地的时间及快车到达甲地时两车之间的间距,根据函数图象上点的坐标,利用待定系数法即可求出该函数关系式;
(4)利用待定系数法求出当0≤x≤4时y与x之间的函数关系式,将y=300分别代入0≤x≤4时及4≤x≤时的函数关系式中求出x值,此题得解.
【详解】
解:(1)∵当x=0时,y=10,
∴甲乙两地相距10千米.
10÷10=1(千米/小时).
故答案为10;1.
(2)设快车的速度为a千米/小时,
根据题意得:4(1+a)=10,
解得:a=2.
答:快车速度是2千米/小时.
(3)快车到达甲地的时间为10÷2=(小时),
当x=时,两车之间的距离为1×=400(千米).
设当4≤x≤时,y与x之间的函数关系式为y=kx+b(k≠0),
∵该函数图象经过点(4,0)和(,400),
∴,解得:,
∴从两车相遇到快车到达甲地时y与x之间的函数关系式为y=150x﹣10.
(4)设当0≤x≤4时,y与x之间的函数关系式为y=mx+n(m≠0),
∵该函数图象经过点(0,10)和(4,0),
∴,解得:,
∴y与x之间的函数关系式为y=﹣150x+10.
当y=300时,有﹣150x+10=300或150x﹣10=300,
解得:x=2或x=4.
∴当x=2小时或x=4小时时,两车相距300千米.
【点睛】
本题考查了待定系数法求一次函数解析式、一元一次方程的应用以及一次函数图象上点的坐标特征,解题的关键是:(1)利用速度=两地间距÷慢车行驶的时间,求出慢车的速度;(2)根据两地间距=两车速度之和×相遇时间,列出关于a的一元一次方程;(3)根据点的坐标,利用待定系数法求出函数关系式;(4)利用一次函数图象上点的坐标特征求出当y=300时x的值.
19、 (1) ①y=;②;(1)见解析;(3)见解析
【解析】
(1)根据线段相似的关系得出函数关系式(1)代入①中函数表达式即可填表(3)画图像,分析即可.
【详解】
(1)设AP=x
①当0≤x≤1时
∵MN∥BD
∴△APM∽△AOD
∴
∴MP=
∵AC垂直平分MN
∴PN=PM=x
∴MN=x
∴y=AP•MN=
②当1<x≤4时,P在线段OC上,
∴CP=4﹣x
∴△CPM∽△COD
∴
∴PM=
∴MN=1PM=4﹣x
∴y==﹣
∴y=
(1)由(1)
当x=1时,y=
当x=1时,y=1
当x=3时,y=
(3)根据(1)画出函数图象示意图可知
1、当0≤x≤1时,y随x的增大而增大
1、当1<x≤4时,y随x的增大而减小
【点睛】
本题考查函数,解题的关键是数形结合思想.
20、-17.1
【解析】
按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.
【详解】
解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),
=﹣8﹣14﹣9÷(﹣2),
=﹣62+4.1,
=﹣17.1.
【点睛】
此题要注意正确掌握运算顺序以及符号的处理.
21、(1)见解析;(2)1;(3)估计全校达标的学生有10人
【解析】
(1)成绩一般的学生占的百分比=1-成绩优秀的百分比-成绩不合格的百分比,测试的学生总数=不合格的人数÷不合格人数的百分比,继而求出成绩优秀的人数.
(2)将成绩一般和优秀的人数相加即可;
(3)该校学生文明礼仪知识测试中成绩达标的人数=1200×成绩达标的学生所占的百分比.
【详解】
解:(1)成绩一般的学生占的百分比=1﹣20%﹣50%=30%,
测试的学生总数=24÷20%=120人,
成绩优秀的人数=120×50%=60人,
所补充图形如下所示:
(2)该校被抽取的学生中达标的人数=36+60=1.
(3)1200×(50%+30%)=10(人).
答:估计全校达标的学生有10人.
22、(1)1;(2).
【解析】
(1)先计算乘方、绝对值、负整数指数幂和零指数幂,再计算乘法,最后计算加减运算可得;
(2)先将分子、分母因式分解,再计算乘法,最后计算减法即可得.
【详解】
(1)原式=8-4+×6+1
=8-4+2+1
=1.
(2)原式=
=
=.
【点睛】
本题主要考查实数和分式的混合运算,解题的关键是掌握绝对值性质、负整数指数幂、零指数幂及分式混合运算顺序和运算法则.
23、 (1)-2,1;(2)x=3;(3)4m.
【解析】
(1)因式分解多项式,然后得结论;
(2)两边平方,把无理方程转化为整式方程,求解,注意验根;
(3)设AP的长为xm,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,
【详解】
解:(1),
,
所以或或
,,;
故答案为,1;
(2),
方程的两边平方,得
即
或
,,
当时,,
所以不是原方程的解.
所以方程的解是;
(3)因为四边形是矩形,
所以,
设,则
因为,
,
两边平方,得
整理,得
两边平方并整理,得
即
所以.
经检验,是方程的解.
答:的长为.
【点睛】
考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.
24、(1) (2)证明见解析(3)F在直径BC下方的圆弧上,且
【解析】
(1)由直线l与以BC为直径的圆O相切于点C,即可得∠BCE=90°,∠BFC=∠CFE=90°,则可证得△CEF∽△BEC,然后根据相似三角形的对应边成比例,即可求得EF的长;
(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根据同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,则可证得△CDF∽△BAF;
②由△CDF∽△BAF与△CEF∽△BCF,根据相似三角形的对应边成比例,易证得,又由AB=BC,即可证得CD=CE;
(3)由CE=CD,可得BC= CD=CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度数,则可得F在⊙O的下半圆上,且.
【详解】
(1)解:∵直线l与以BC为直径的圆O相切于点C.
∴∠BCE=90°,
又∵BC为直径,
∴∠BFC=∠CFE=90°,
∵∠FEC=∠CEB,
∴△CEF∽△BEC,
∴,
∵BE=15,CE=9,
即:,
解得:EF= ;
(2)证明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,
∴∠ABF=∠FCD,
同理:∠AFB=∠CFD,
∴△CDF∽△BAF;
②∵△CDF∽△BAF,
∴,
又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,
∴△CEF∽△BCF,
∴,
∴,
又∵AB=BC,
∴CE=CD;
(3)解:∵CE=CD,
∴BC=CD=CE,
在Rt△BCE中,tan∠CBE=,
∴∠CBE=30°,
故 为60°,
∴F在直径BC下方的圆弧上,且.
【点睛】
考查了相似三角形的判定与性质,圆的切线的性质,圆周角的性质以及三角函数的性质等知识.此题综合性很强,解题的关键是方程思想与数形结合思想的应用.
温州市达标名校2021-2022学年中考猜题数学试卷含解析: 这是一份温州市达标名校2021-2022学年中考猜题数学试卷含解析,共21页。试卷主要包含了不等式的最小整数解是等内容,欢迎下载使用。
2021-2022学年山西省永济市重点达标名校中考猜题数学试卷含解析: 这是一份2021-2022学年山西省永济市重点达标名校中考猜题数学试卷含解析,共24页。试卷主要包含了答题时请按要求用笔,下列计算正确的是,下列各式计算正确的是等内容,欢迎下载使用。
2021-2022学年辽宁省本溪市达标名校中考猜题数学试卷含解析: 这是一份2021-2022学年辽宁省本溪市达标名校中考猜题数学试卷含解析,共23页。