高考数学二轮复习第2篇6函数与导数第4讲导数的综合应用课件
展开第四讲 导数的综合应用
导航立前沿•考点启方向
自主先热身•真题定乾坤
核心拔头筹•考点巧突破
明晰易错点•高考零失误
导数日益成为解决数学问题强有力的工具,利用导数研究函数的单调性与极(最)值是常见题型,而导数与函数、不等式的交汇命题,则是高考的热点和难点.在高考压轴题中,常以二次函数、指数函数、对数函数为载体考查函数的零点、比较大小、不等式证明、不等式恒成立与能成立等热点问题.
(文科)1.(2021·全国卷甲卷)设函数f(x)=a2x2+ax-3ln x+1,其中a>0.(1)讨论f(x)的单调性;(2)若y=f(x)的图象与x轴没有公共点,求a的取值范围.
2.(2021·全国卷乙卷)已知函数f(x)=x3-x2+ax+1.(1)讨论f(x)的单调性;(2)求曲线y=f(x)过坐标原点的切线与曲线y=f(x)的公共点的坐标.
3.(2020·全国卷Ⅰ卷)已知函数f(x)=ex-a(x+2).(1)当a=1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.
【解析】 (1)当a=1时,f(x)=ex-(x+2),f′(x)=ex-1,令f′(x)<0,解得x<0,令f′(x)>0,解得x>0,所以f(x)的减区间为(-∞,0),增区间为(0,+∞);
当0
对于导数的综合问题每年都必须考查,主要是针对以下方面出题,而且题目难度较大,一般放在试卷的21~22位置:(1)函数单调性和极值、最值的分类讨论.(2)研究方程的根,可以通过构造函数g(x)的方法,把问题转化为研究构造的函数g(x)的零点问题.以及函数g(x)的单调性、结合零点存在定理判断其零点的个数.(3)利用导数证明不等式.(4)利用导数解决恒成立问题.
1.常见重要不等式(1)ln x≤x-1(x>0);(2)ex≥x+1.(当且仅当x=0时等号成立)
考点一 利用导数研究不等式问题
2.构造辅助函数的四种方法(1)移项法:证明不等式f(x)>g(x)(f(x)<g(x))的问题转化为证明f(x)-g(x)>0(f(x)-g(x)<0),进而构造辅助函数h(x)=f(x)-g(x).(2)构造“形似”函数:对原不等式同解变形,如移项、通分、取对数;把不等式转化为左右两边是相同结构的式子的结构,根据“相同结构”构造辅助函数.(3)主元法:对于(或可化为)f(x1,x2)≥A的不等式,可选x1(或x2)为主元,构造函数f(x,x2)[或f(x1,x)].(4)放缩法:若所构造函数最值不易求解,可将所证明不等式进行放缩,再重新构造函数.
3.含有双变量的不等式问题的常见转化策略(1)∀x1∈[a,b],x2∈[c,d],f(x1)>g(x2)⇔f(x)在[a,b]上的最小值>g(x)在[c,d]上的最大值.(2)∃x1∈[a,b],x2∈[c,d],f(x1)>g(x2)⇔f(x)在[a,b]上的最大值>g(x)在[c,d]上的最小值.(3)∀x1∈[a,b],∃x2∈[c,d],f(x1)>g(x2)⇔f(x)在[a,b]上的最小值>g(x)在[c,d]上的最小值.(4)∃x1∈[a,b],∀x2∈[c,d],f(x1)>g(x2)⇔f(x)在[a,b]上的最大值>g(x)在[c,d]上的最大值.
利用导数证明不等式的两个妙招(1)构造函数法证明不等式①移项,使等式右边为零,左边构造为新函数.②求导判断单调性,通常要对参数分类讨论.③根据单调性,求出最值与“0”比较即可得证.
(2)转化函数最值法证明不等式①条件:函数很复杂,直接求导不可行.②拆分:把复杂函数拆分成两个易求最值函数.③方法:分别求导,结合单调性和图象以及极值、最值,比较得出结论.
角度2 利用导数解决不等式恒(能)成立问题(2021·重庆八中高三月考)已知函数f(x)=ex-kx,g(x)=x2+k2-3.(1)讨论函数y=f(x)的单调区间;(2)若2f(x)≥g(x)对任意x≥0恒成立,求实数k的取值范围.
【解析】 (1)f′(x)=ex-k,①当k≤0时,f′(x)>0恒成立,则y=f(x)在R上单调递增;②当k>0时,x>ln k时,f′(x)>0,y=f(x)的单调递增区为(ln k,+∞);x
方程的根、函数的零点、函数图象与x轴的交点的横坐标是三个等价的概念,解决这类问题可以通过函数的单调性、极值与最值,画出函数图象的走势,通过数形结合思想直观求解.
考点二 利用导数研究函数的零点问题
【解析】 (1)当a=-2时,f(x)=xex-x2-2x,f′(x)=ex+xex-2x-2=ex(x+1)-2(x+1)=(x+1)(ex-2),令f′(x)>0,即(x+1)(ex-2)>0,解得x>ln 2或x<-1,令f′(x)<0,即(x+1)(ex-2)<0,解得-1
当-1
根据函数零点个数确定参数取值范围的基本思路也是数形结合,即根据函数的单调性、极值、函数值的变化趋势大致得出函数y=f(x)的图象,再根据零点个数确定函数y=f(x)的图象交点的个数,得出参数满足的不等式,求得参数的取值范围,一个基本的技巧是把f(x)=0化为g(x)=h(x),据f(x)零点个数确定函数y=g(x),y=h(x)图象的交点个数,得出参数满足的不等式,求得参数的取值范围.
已知函数f(x)=x2+ax+3-a若x∈[-2,2]时,f(x)≥0恒成立,求a的取值范围.
易错点:用错恒成立的条件
统考版2024高考数学二轮专题复习专题六函数与导数第4讲导数的综合应用课件理: 这是一份统考版2024高考数学二轮专题复习专题六函数与导数第4讲导数的综合应用课件理,共51页。PPT课件主要包含了考点一,考点二,考点三,afxmin,a≤fxmin,所有的,快审题等内容,欢迎下载使用。
2023届高考数学二轮复习专题一函数与导数第5讲函数与导数的综合应用课件: 这是一份2023届高考数学二轮复习专题一函数与导数第5讲函数与导数的综合应用课件,共35页。
高考数学二轮复习第2部分专题篇素养提升专题6函数与导数第4讲导数的综合应用课件: 这是一份高考数学二轮复习第2部分专题篇素养提升专题6函数与导数第4讲导数的综合应用课件,共60页。PPT课件主要包含了专题六函数与导数等内容,欢迎下载使用。