2021-2022学年安徽省合肥市五十中学中考数学适应性模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于( )
A.1∶3 B.2∶3 C.∶2 D.∶3
2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论: ① abc<0;② 2a+b=0; ③ b2-4ac<0;④ 9a+3b+c>0; ⑤ c+8a<0.正确的结论有( ).
A.1个 B.2个 C.3个 D.4个
3.下列命题中,错误的是( )
A.三角形的两边之和大于第三边
B.三角形的外角和等于360°
C.等边三角形既是轴对称图形,又是中心对称图形
D.三角形的一条中线能将三角形分成面积相等的两部分
4.如图,PB切⊙O于点B,PO交⊙O于点E,延长PO交⊙O于点A,连结AB,⊙O的半径OD⊥AB于点C,BP=6,∠P=30°,则CD的长度是( )
A. B. C. D.2
5.下列运算中,正确的是 ( )
A.x2+5x2=6x4 B.x3 C. D.
6.下列各式计算正确的是( )
A.a4•a3=a12 B.3a•4a=12a C.(a3)4=a12 D.a12÷a3=a4
7.如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM,ON上滑动,下列结论:
①若C,O两点关于AB对称,则OA=;
②C,O两点距离的最大值为4;
③若AB平分CO,则AB⊥CO;
④斜边AB的中点D运动路径的长为π.
其中正确的是( )
A.①② B.①②③ C.①③④ D.①②④
8.将一把直尺与一块三角板如图所示放置,若则∠2的度数为( )
A.50° B.110° C.130° D.150°
9.一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是( )
A.30厘米、45厘米; B.40厘米、80厘米; C.80厘米、120厘米; D.90厘米、120厘米
10.下列四个几何体中,主视图与左视图相同的几何体有( )
A.1个 B.2个 C.3个 D.4个
11.如图,菱形ABCD中,∠B=60°,AB=4,以AD为直径的⊙O交CD于点E,则的长为( )
A. B. C. D.
12.1903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为( )
A.810 年 B.1620 年 C.3240 年 D.4860 年
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有_____个,第n幅图中共有_____个.
14.已知 ,是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足=﹣1,则m的值是____.
15.三角形的每条边的长都是方程的根,则三角形的周长是 .
16.某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.该年级共有700人,估计该年级足球测试成绩为D等的人数为_____人.
17.已知点P(a,b)在反比例函数y=的图象上,则ab=_____.
18.将2.05×10﹣3用小数表示为__.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.求证:BC是⊙O的切线;已知AD=3,CD=2,求BC的长.
20.(6分)如图,已知二次函数与x轴交于A、B两点,A在B左侧,点C是点A下方,且AC⊥x轴.
(1)已知A(-3,0),B(-1,0),AC=OA.
①求抛物线解析式和直线OC的解析式;
②点P从O出发,以每秒2个单位的速度沿x轴负半轴方向运动,Q从O出发,以每秒个单位的速度沿OC方向运动,运动时间为t.直线PQ与抛物线的一个交点记为M,当2PM=QM时,求t的值(直接写出结果,不需要写过程)
(2)过C作直线EF与抛物线交于E、F两点(E、F在x轴下方),过E作EG⊥x轴于G,连CG,BF,求证:CG∥BF
21.(6分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了200m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角∠β=42°,求缆车从点A到点D垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)
22.(8分)定义:和三角形一边和另两边的延长线同时相切的圆叫做三角形这边上的旁切圆.
如图所示,已知:⊙I是△ABC的BC边上的旁切圆,E、F分别是切点,AD⊥IC于点D.
(1)试探究:D、E、F三点是否同在一条直线上?证明你的结论.
(2)设AB=AC=5,BC=6,如果△DIE和△AEF的面积之比等于m,,试作出分别以 , 为两根且二次项系数为6的一个一元二次方程.
23.(8分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.
24.(10分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=1.求抛物线的函数表达式.当t为何值时,矩形ABCD的周长有最大值?最大值是多少?保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.
25.(10分)某校检测学生跳绳水平,抽样调查了部分学生的“1分钟跳绳”成绩,并制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图
(1)D组的人数是 人,补全频数分布直方图,扇形图中m= ;
(2)本次调查数据中的中位数落在 组;
(3)如果“1分钟跳绳”成绩大于或等于120次为优秀,那么该校4500名学生中“1分钟跳绳”成绩为优秀的大约有多少人?
26.(12分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;
(1)搅匀后,从中任意取一个球,标号为正数的概率是 ;
(2) 搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.
27.(12分)如图,在Rt△ABC中,∠ACB=90°,AC=2cm,AB=4cm,动点P从点C出发,在BC边上以每秒cm的速度向点B匀速运动,同时动点Q也从点C出发,沿C→A→B以每秒4cm的速度匀速运动,运动时间为t秒,连接PQ,以PQ为直径作⊙O.
(1)当时,求△PCQ的面积;
(2)设⊙O的面积为s,求s与t的函数关系式;
(3)当点Q在AB上运动时,⊙O与Rt△ABC的一边相切,求t的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
∵DE⊥AC,EF⊥AB,FD⊥BC,
∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,
∴∠C=∠FDE,
同理可得:∠B=∠DFE,∠A=DEF,
∴△DEF∽△CAB,
∴△DEF与△ABC的面积之比= ,
又∵△ABC为正三角形,
∴∠B=∠C=∠A=60°
∴△EFD是等边三角形,
∴EF=DE=DF,
又∵DE⊥AC,EF⊥AB,FD⊥BC,
∴△AEF≌△CDE≌△BFD,
∴BF=AE=CD,AF=BD=EC,
在Rt△DEC中,
DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,
又∵DC+BD=BC=AC=DC,
∴,
∴△DEF与△ABC的面积之比等于:
故选A.
点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边之比,进而得到面积比.
2、C
【解析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:抛物线开口向下,得:a<0;抛物线的对称轴为x=-=1,则b=-2a,2a+b=0,b=-2a,故b>0;抛物线交y轴于正半轴,得:c>0.
∴abc<0, ①正确;
2a+b=0,②正确;
由图知:抛物线与x轴有两个不同的交点,则△=b2-4ac>0,故③错误;
由对称性可知,抛物线与x轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故④错误;
观察图象得当x=-2时,y<0,
即4a-2b+c<0
∵b=-2a,
∴4a+4a+c<0
即8a+c<0,故⑤正确.
正确的结论有①②⑤,
故选:C
【点睛】
主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
3、C
【解析】
根据三角形的性质即可作出判断.
【详解】
解:A、正确,符合三角形三边关系;
B、正确;三角形外角和定理;
C、错误,等边三角形既是轴对称图形,不是中心对称图形;
D、三角形的一条中线能将三角形分成面积相等的两部分,正确.
故选:C.
【点睛】
本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.
4、C
【解析】
连接OB,根据切线的性质与三角函数得到∠POB=60°,OB=OD=2,再根据等腰三角形的性质与三角函数得到OC的长,即可得到CD的长.
【详解】
解:如图,连接OB,
∵PB切⊙O于点B,
∴∠OBP=90°,
∵BP=6,∠P=30°,
∴∠POB=60°,OD=OB=BPtan30°=6×=2,
∵OA=OB,
∴∠OAB=∠OBA=30°,
∵OD⊥AB,
∴∠OCB=90°,
∴∠OBC=30°,
则OC=OB=,
∴CD=.
故选:C.
【点睛】
本题主要考查切线的性质与锐角的三角函数,解此题的关键在于利用切线的性质得到相关线段与角度的值,再根据圆和等腰三角形的性质求解即可.
5、C
【解析】
分析:直接利用积的乘方运算法则及合并同类项和同底数幂的乘除运算法则分别分析得出结果.
详解:A. x2+5x2= ,本项错误;B. ,本项错误;C. ,正确;
D.,本项错误.故选C.
点睛:本题主要考查了积的乘方运算及合并同类项和同底数幂的乘除运算,解答本题的关键是正确掌握运算法则.
6、C
【解析】
根据同底数幂的乘法,可判断A、B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D.
【详解】
A.a4•a3=a7,故A错误;
B.3a•4a=12a2,故B错误;
C.(a3)4=a12,故C正确;
D.a12÷a3=a9,故D错误.
故选C.
【点睛】
本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减是解题的关键.
7、D
【解析】
分析:①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB是OC的垂直平分线,所以
②当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;
③如图2,当∠ABO=30°时,易证四边形OACB是矩形,此时AB与CO互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A、C、B、O四点共圆,则AB为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC是直径时,AB与OC互相平分,但AB与OC不一定垂直;
④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.
详解:在Rt△ABC中,∵
∴
①若C.O两点关于AB对称,如图1,
∴AB是OC的垂直平分线,
则
所以①正确;
②如图1,取AB的中点为E,连接OE、CE,
∵
∴
当OC经过点E时,OC最大,
则C.O两点距离的最大值为4;
所以②正确;
③如图2,当时,
∴四边形AOBC是矩形,
∴AB与OC互相平分,
但AB与OC的夹角为不垂直,
所以③不正确;
④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的
则:
所以④正确;
综上所述,本题正确的有:①②④;
故选D.
点睛:属于三角形的综合体,考查了直角三角形的性质,直角三角形斜边上中线的性质,轴对称的性质,弧长公式等,熟练掌握直角三角形斜边的中线等于斜边的一半是解题的关键.
8、C
【解析】
如图,根据长方形的性质得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.
【详解】
∵EF∥GH,∴∠FCD=∠2,
∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,
∴∠2=∠FCD=130°,
故选C.
【点睛】
本题考查了平行线的性质,三角形外角的性质等,准确识图是解题的关键.
9、C
【解析】当60cm的木条与20cm是对应边时,那么另两条边的木条长度分别为90cm与120cm;
当60cm的木条与30cm是对应边时,那么另两条边的木条长度分别为40cm与80cm;
当60cm的木条与40cm是对应边时,那么另两条边的木条长度分别为30cm与45cm;
所以A、B、D选项不符合题意,C选项符合题意,
故选C.
10、D
【解析】
解:①正方体的主视图与左视图都是正方形;
②球的主视图与左视图都是圆;
③圆锥主视图与左视图都是三角形;
④圆柱的主视图和左视图都是长方形;
故选D.
11、B
【解析】
连接OE,由菱形的性质得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性质和三角形内角和定理求出∠DOE=60°,再由弧长公式即可得出答案.
【详解】
解:连接OE,如图所示:
∵四边形ABCD是菱形,
∴∠D=∠B=60°,AD=AB=4,
∴OA=OD=2,
∵OD=OE,
∴∠OED=∠D=60°,
∴∠DOE=180°﹣2×60°=60°,
∴ 的长==;
故选B.
【点睛】
本题考查弧长公式、菱形的性质、等腰三角形的性质等知识;熟练掌握菱形的性质,求出∠DOE的度数是解决问题的关键.
12、B
【解析】
根据半衰期的定义,函数图象的横坐标,可得答案.
【详解】
由横坐标看出1620年时,镭质量减为原来的一半,
故镭的半衰期为1620年,
故选B.
【点睛】
本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、7 2n﹣1
【解析】
根据题意分析可得:第1幅图中有1个,第2幅图中有2×2-1=3个,第3幅图中有2×3-1=5个,…,可以发现,每个图形都比前一个图形多2个,继而即可得出答案.
【详解】
解:根据题意分析可得:第1幅图中有1个.
第2幅图中有2×2-1=3个.
第3幅图中有2×3-1=5个.
第4幅图中有2×4-1=7个.
….
可以发现,每个图形都比前一个图形多2个.
故第n幅图中共有(2n-1)个.
故答案为7;2n-1.
点睛:考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律.
14、3.
【解析】
可以先由韦达定理得出两个关于、的式子,题目中的式子变形即可得出相应的与韦达定理相关的式子,即可求解.
【详解】
得+=-2m-3,=m2,又因为,所以m2-2m-3=0,得m=3或m=-1,因为一元二次方程的两个不相等的实数根,所以△>0,得(2m+3)2-4×m2=12m+9>0,所以m>,所以m=-1舍去,综上m=3.
【点睛】
本题考查了根与系数的关系,将根与系数的关系与代数式相结合解题是解决本题的关键.
15、6或2或12
【解析】
首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程的根,进行分情况计算.
【详解】
由方程,得=2或1.
当三角形的三边是2,2,2时,则周长是6;
当三角形的三边是1,1,1时,则周长是12;
当三角形的三边长是2,2,1时,2+2=1,不符合三角形的三边关系,应舍去;
当三角形的三边是1,1,2时,则三角形的周长是1+1+2=2.
综上所述此三角形的周长是6或12或2.
16、1
【解析】
试题解析:∵总人数为14÷28%=50(人),
∴该年级足球测试成绩为D等的人数为(人).
故答案为:1.
17、2
【解析】
【分析】接把点P(a,b)代入反比例函数y=即可得出结论.
【详解】∵点P(a,b)在反比例函数y=的图象上,
∴b=,
∴ab=2,
故答案为:2.
【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
18、0.1
【解析】试题解析:原式=2.05×10-3=0.1.
【点睛】本题考查了科学记数法-原数,用科学记数法表示的数还原成原数时,n>0时,n是几,小数点就向右移几位;n<0时,n是几,小数点就向左移几位.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1)证明见解析
(2)BC=
【解析】
(1)AB是⊙O的直径,得∠ADB=90°,从而得出∠BAD=∠DBC,即∠ABC=90°,即可证明BC是⊙O的切线;
(2)可证明△ABC∽△BDC,则,即可得出BC=.
【详解】
(1)∵AB是⊙O的切直径,
∴∠ADB=90°,
又∵∠BAD=∠BED,∠BED=∠DBC,
∴∠BAD=∠DBC,
∴∠BAD+∠ABD=∠DBC+∠ABD=90°,
∴∠ABC=90°,
∴BC是⊙O的切线;
(2)解:∵∠BAD=∠DBC,∠C=∠C,
∴△ABC∽△BDC,
∴,即BC2=AC•CD=(AD+CD)•CD=10,
∴BC=.
考点:1.切线的判定;2.相似三角形的判定和性质.
20、 (1)①y=-x2-4x-3;y=x;②t= 或;(2)证明见解析.
【解析】
(1)把A(-3,0),B(-1,0)代入二次函数解析式即可求出;由AC=OA知C点坐标为(-3,-3),故可求出直线OC的解析式;②由题意得OP=2t,P(-2t,0),过Q作QH⊥x轴于H,
得OH=HQ=t,可得Q(-t,-t),直线 PQ为y=-x-2t,过M作MG⊥x轴于G,由,则2PG=GH,由,得, 于是,解得,从而求出M(-3t,t)或M(),再分情况计算即可; (2) 过F作FH⊥x轴于H,想办法证得tan∠CAG=tan∠FBH,即∠CAG=∠FBH,即得证.
【详解】
解:(1)①把A(-3,0),B(-1,0)代入二次函数解析式得解得
∴y=-x2-4x-3;
由AC=OA知C点坐标为(-3,-3),∴直线OC的解析式y=x;
②OP=2t,P(-2t,0),过Q作QH⊥x轴于H,
∵QO=,∴OH=HQ=t,
∴Q(-t,-t),∴PQ:y=-x-2t,
过M作MG⊥x轴于G,
∴,
∴2PG=GH
∴,即,
∴ ,
∴,
∴M(-3t,t)或M()
当M(-3t,t)时:,
∴
当M()时:,
∴
综上:或
(2)设A(m,0)、B(n,0),
∴m、n为方程x2-bx-c=0的两根,
∴m+n=b,mn=-c,
∴y=-x2+(m+n)x-mn=-(x-m)(x-n),
∵E、F在抛物线上,设、,
设EF:y=kx+b,
∴ ,
∴
∴
∴,令x=m
∴
=
∴AC=,
又∵,
∴tan∠CAG=,
另一方面:过F作FH⊥x轴于H,
∴,,
∴tan∠FBH=
∴tan∠CAG=tan∠FBH
∴∠CAG=∠FBH
∴CG∥BF
【点睛】
此题主要考查二次函数的综合问题,解题的关键是熟知相似三角形的判定与性质及正确作出辅助线进行求解.
21、缆车垂直上升了186 m.
【解析】
在Rt中,米,在Rt中,即可求出缆车从点A到点D垂直上升的距离.
【详解】
解:
在Rt中,斜边AB=200米,∠α=16°,
(m),
在Rt中,斜边BD=200米,∠β=42°,
因此缆车垂直上升的距离应该是BC+DF=186(米).
答:缆车垂直上升了186米.
【点睛】
本题考查了解直角三角形的应用-坡度坡角问题,锐角三角函数的定义,结合图形理解题意是解决问题的关键.
22、 (1) D、E、F三点是同在一条直线上.(2) 6x2﹣13x+6=1.
【解析】
(1)利用切线长定理及梅氏定理即可求证;
(2)利用相似和韦达定理即可求解.
解:(1)结论:D、E、F三点是同在一条直线上.
证明:分别延长AD、BC交于点K,
由旁切圆的定义及题中已知条件得:AD=DK,AC=CK,
再由切线长定理得:AC+CE=AF,BE=BF,
∴KE=AF.∴,
由梅涅劳斯定理的逆定理可证,D、E、F三点共线,
即D、E、F三点共线.
(2)∵AB=AC=5,BC=6,
∴A、E、I三点共线,CE=BE=3,AE=4,
连接IF,则△ABE∽△AIF,△ADI∽△CEI,A、F、I、D四点共圆.
设⊙I的半径为r,则:,
∴,即,,
∴由△AEF∽△DEI得:
,
∴.
∴,
因此,由韦达定理可知:分别以、为两根且二次项系数为6的一个一元二次方程是6x2﹣13x+6=1.
点睛:本是一道关于圆的综合题.正确分析图形并应用图形的性质是解题的关键.
23、木竿PQ的长度为3.35米.
【解析】
过N点作ND⊥PQ于D,则四边形DPMN为矩形,根据矩形的性质 得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长.
试题解析:
【详解】
解:过N点作ND⊥PQ于D,
则四边形DPMN为矩形,
∴DN=PM=1.8m,DP=MN=1.1m,
∴,
∴QD==2.25,
∴PQ=QD+DP= 2.25+1.1=3.35(m).
答:木竿PQ的长度为3.35米.
【点睛】
本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键.
24、(1);(2)当t=1时,矩形ABCD的周长有最大值,最大值为;(3)抛物线向右平移的距离是1个单位.
【解析】
(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,1)代入计算可得;
(2)由抛物线的对称性得BE=OA=t,据此知AB=10-2t,再由x=t时AD=,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;
(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.
【详解】
(1)设抛物线解析式为,
当时,,
点的坐标为,
将点坐标代入解析式得,
解得:,
抛物线的函数表达式为;
(2)由抛物线的对称性得,
,
当时,,
矩形的周长
,
,
,
,
当时,矩形的周长有最大值,最大值为;
(3)如图,
当时,点、、、的坐标分别为、、、,
矩形对角线的交点的坐标为,
直线平分矩形的面积,
点是和的中点,
,
由平移知,
是的中位线,
,
所以抛物线向右平移的距离是1个单位.
【点睛】
本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.
25、(1)16、84°;(2)C;(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有3000(人)
【解析】
(1)根据百分比=所长人数÷总人数,圆心角=百分比,计算即可;
(2)根据中位数的定义计算即可;
(3)用一半估计总体的思考问题即可;
【详解】
(1)由题意总人数人,
D组人数人;
B组的圆心角为;
(2)根据A组6人,B组14人,C组19人,D组16人,E组5人可知本次调查数据中的中位数落在C组;
(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有人.
【点睛】
本题主要考查了数据的统计,熟练掌握扇形图圆心角度数求解方法,总体求解方法等相关内容是解决本题的关键.
26、(1);(2)
【解析】
【分析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率.
【详解】解:(1)因为1、-1、2三个数中由两个正数,
所以从中任意取一个球,标号为正数的概率是.
(2)因为直线y=kx+b经过一、二、三象限,
所以k>0,b>0,
又因为取情况:
k b
1
-1
2
1
1,1
1,-1
1,2
-1
-1,1
-1,-1
-1.2
2
2,1
2,-1
2,2
共9种情况,符合条件的有4种,
所以直线y=kx+b经过一、二、三象限的概率是.
【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出 .
27、(1);(2)①;②;(3)t的值为或1或.
【解析】
(1)先根据t的值计算CQ和CP的长,由图形可知△PCQ是直角三角形,根据三角形面积公式可得结论;
(2)分两种情况:①当Q在边AC上运动时,②当Q在边AB上运动时;分别根据勾股定理计算PQ2,最后利用圆的面积公式可得S与t的关系式;
(3)分别当⊙O与BC相切时、当⊙O与AB相切时,当⊙O与AC相切时三种情况分类讨论即可确定答案.
【详解】
(1)当t=时,CQ=4t=4×=2,即此时Q与A重合,
CP=t=,
∵∠ACB=90°,
∴S△PCQ=CQ•PC=×2×=;
(2)分两种情况:
①当Q在边AC上运动时,0<t≤2,如图1,
由题意得:CQ=4t,CP=t,
由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,
∴S=π=;
②当Q在边AB上运动时,2<t<4如图2,
设⊙O与AB的另一个交点为D,连接PD,
∵CP=t,AC+AQ=4t,
∴PB=BC﹣PC=2﹣t,BQ=2+4﹣4t=6﹣4t,
∵PQ为⊙O的直径,
∴∠PDQ=90°,
Rt△ACB中,AC=2cm,AB=4cm,
∴∠B=30°,
Rt△PDB中,PD=PB=,
∴BD=,
∴QD=BQ﹣BD=6﹣4t﹣=3﹣,
∴PQ==,
∴S=π==;
(3)分三种情况:
①当⊙O与AC相切时,如图3,设切点为E,连接OE,过Q作QF⊥AC于F,
∴OE⊥AC,
∵AQ=4t﹣2,
Rt△AFQ中,∠AQF=30°,
∴AF=2t﹣1,
∴FQ=(2t﹣1),
∵FQ∥OE∥PC,OQ=OP,
∴EF=CE,
∴FQ+PC=2OE=PQ,
∴(2t﹣1)+t=,
解得:t=或﹣(舍);
②当⊙O与BC相切时,如图4,
此时PQ⊥BC,
∵BQ=6﹣4t,PB=2﹣t,
∴cos30°=,
∴,
∴t=1;
③当⊙O与BA相切时,如图5,
此时PQ⊥BA,
∵BQ=6﹣4t,PB=2﹣t,
∴cos30°=,
∴,
∴t=,
综上所述,t的值为或1或.
【点睛】
本题是圆的综合题,涉及了三角函数、勾股定理、圆的面积、切线的性质等知识,综合性较强,有一定的难度,以点P和Q运动为主线,画出对应的图形是关键,注意数形结合的思想.
安徽省合肥市五十中学2021-2022学年中考一模数学试题含解析: 这是一份安徽省合肥市五十中学2021-2022学年中考一模数学试题含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,计算﹣的结果为,平面直角坐标系中,若点A等内容,欢迎下载使用。
2022届安徽省合肥市肥东四中学中考数学适应性模拟试题含解析: 这是一份2022届安徽省合肥市肥东四中学中考数学适应性模拟试题含解析,共25页。试卷主要包含了方程,已知二次函数y=,点A,已知抛物线y=ax2+bx+c等内容,欢迎下载使用。
2021-2022学年江苏省南京市宁海五十中学中考数学适应性模拟试题含解析: 这是一份2021-2022学年江苏省南京市宁海五十中学中考数学适应性模拟试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,的倒数是,计算的结果是等内容,欢迎下载使用。