2021-2022学年广东省东莞市寮步镇信义校中考数学五模试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.的负倒数是( )
A. B.- C.3 D.﹣3
2.下列四个几何体,正视图与其它三个不同的几何体是( )
A. B.
C. D.
3.如图,直线被直线所截,,下列条件中能判定的是( )
A. B. C. D.
4.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B,C).若线段AD长为正整数,则点D的个数共有( )
A.5个 B.4个 C.3个 D.2个
5.下列计算错误的是( )
A.4x3•2x2=8x5 B.a4﹣a3=a
C.(﹣x2)5=﹣x10 D.(a﹣b)2=a2﹣2ab+b2
6.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:
型号(厘米)
38
39
40
41
42
43
数量(件)
25
30
36
50
28
8
商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )
A.平均数 B.中位数 C.众数 D.方差
7.若关于x的不等式组只有5个整数解,则a的取值范围( )
A. B. C. D.
8.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是( )
A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长
C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长:学*科*网]
9.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=( )
A.12 B.8 C.4 D.3
10.下列运算正确的是( )
A. B. =﹣3 C.a•a2=a2 D.(2a3)2=4a6
11.关于反比例函数y=,下列说法中错误的是( )
A.它的图象是双曲线
B.它的图象在第一、三象限
C.y的值随x的值增大而减小
D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上
12.为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是( )
A.极差是3.5 B.众数是1.5 C.中位数是3 D.平均数是3
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则tan∠AEF的值是_____.
14.2的平方根是_________.
15.方程的解是_____.
16.如图,点A在双曲线上,AB⊥x轴于B,且△AOB的面积S△AOB=2,则k=______.
17.圆锥体的底面周长为6π,侧面积为12π,则该圆锥体的高为 .
18.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:①OA=OD;②AD⊥EF;③当∠BAC=90°时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是_________.(填序号)
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图1,反比例函数(x>0)的图象经过点A(,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.
(1)求k的值;
(2)求tan∠DAC的值及直线AC的解析式;
(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.
20.(6分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:
时间(分钟)
里程数(公里)
车费(元)
小明
8
8
12
小刚
12
10
16
(1)求x,y的值;
(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?
21.(6分)如图1,AB为半圆O的直径,半径的长为4cm,点C为半圆上一动点,过点C作CE⊥AB,垂足为点E,点D为弧AC的中点,连接DE,如果DE=2OE,求线段AE的长.
小何根据学习函数的经验,将此问题转化为函数问题解决.
小华假设AE的长度为xcm,线段DE的长度为ycm.
(当点C与点A重合时,AE的长度为0cm),对函数y随自变量x的变化而变化的规律进行探究.
下面是小何的探究过程,请补充完整:(说明:相关数据保留一位小数).
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm
0
1
2
3
4
5
6
7
8
y/cm
0
1.6
2.5
3.3
4.0
4.7
5.8
5.7
当x=6cm时,请你在图中帮助小何完成作图,并使用刻度尺度量此时线段DE的长度,填写在表格空白处:
(2)在图2中建立平面直角坐标系,描出补全后的表中各组对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象解决问题,当DE=2OE时,AE的长度约为 cm.
22.(8分)在等腰Rt△ABC中,∠ACB=90°,AC=BC,点D是边BC上任意一点,连接AD,过点C作CE⊥AD于点E.
(1)如图1,若∠BAD=15°,且CE=1,求线段BD的长;
(2)如图2,过点C作CF⊥CE,且CF=CE,连接FE并延长交AB于点M,连接BF,求证:AM=BM.
23.(8分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+1.设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?
24.(10分)如图,的直角顶点P在第四象限,顶点A、B分别落在反比例函数图象的两支上,且轴于点C,轴于点D,AB分别与x轴,y轴相交于点F和已知点B的坐标为.
填空:______;
证明:;
当四边形ABCD的面积和的面积相等时,求点P的坐标.
25.(10分)为支持农村经济建设,某玉米种子公司对某种种子的销售价格规定如下:每千克的价格为a元,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折,某农户对购买量和付款金额这两个变量的对应关系用列表做了分析,并绘制出了函数图象,如图所示,其中函数图象中A点的左边为(2,10),请你结合表格和图象,回答问题:
购买量x(千克)
1
1.5
2
2.5
3
付款金额y(元)
a
7.5
10
12
b
(1)由表格得:a= ; b= ;
(2)求y关于x的函数解析式;
(3)已知甲农户将8元钱全部用于购买该玉米种子,乙农户购买4千克该玉米种子,如果他们两人合起来购买,可以比分开购买节约多少钱?
26.(12分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:
时间(第x天)
1
2
3
10
…
日销售量(n件)
198
196
194
?
…
②该产品90天内每天的销售价格与时间(第x天)的关系如下表:
时间(第x天)
1≤x<50
50≤x≤90
销售价格(元/件)
x+60
100
(1)求出第10天日销售量;
(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格-每件成本))
(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.
27.(12分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的图象经过A(0,4),B(2,0),C(-2,0)三点.
(1)求二次函数的表达式;
(2)在x轴上有一点D(-4,0),将二次函数的图象沿射线DA方向平移,使图象再次经过点B.
①求平移后图象顶点E的坐标;
②直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
根据倒数的定义,互为倒数的两数乘积为1,2×=1.再求出2的相反数即可解答.
【详解】
根据倒数的定义得:2×=1.
因此的负倒数是-2.
故选D.
【点睛】
本题考查了倒数,解题的关键是掌握倒数的概念.
2、C
【解析】
根据几何体的三视图画法先画出物体的正视图再解答.
【详解】
解:A、B、D三个几何体的主视图是由左上一个正方形、下方两个正方形构成的,
而C选项的几何体是由上方2个正方形、下方2个正方形构成的,
故选:C.
【点睛】
此题重点考查学生对几何体三视图的理解,掌握几何体的主视图是解题的关键.
3、C
【解析】
试题解析:A、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;
B、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;
C、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB∥CD,故本选项正确;
D、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;
故选C.
4、C
【解析】
试题分析:过A作AE⊥BC于E,∵AB=AC=5,BC=8,∴BE=EC=4,∴AE=3,∵D是线段BC上的动点(不含端点B,C),∴AE≤AD<AB,即3≤AD<5,∵AD为正整数,∴AD=3或AD=4,当AD=4时,E的左右两边各有一个点D满足条件,∴点D的个数共有3个.故选C.
考点:等腰三角形的性质;勾股定理.
5、B
【解析】
根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)1=a1±1ab+b1.可巧记为:“首平方,末平方,首末两倍中间放”可得答案.
【详解】
A选项:4x3•1x1=8x5,故原题计算正确;
B选项:a4和a3不是同类项,不能合并,故原题计算错误;
C选项:(-x1)5=-x10,故原题计算正确;
D选项:(a-b)1=a1-1ab+b1,故原题计算正确;
故选:B.
【点睛】
考查了整式的乘法,关键是掌握整式的乘法各计算法则.
6、B
【解析】
分析:商场经理要了解哪些型号最畅销,所关心的即为众数.
详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.
故选:C.
点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
7、A
【解析】
分别解两个不等式得到得x<20和x>3-2a,由于不等式组只有5个整数解,则不等式组的解集为3-2a<x<20,且整数解为15、16、17、18、19,得到14≤3-2a<15,然后再解关于a的不等式组即可.
【详解】
解①得x<20
解②得x>3-2a,
∵不等式组只有5个整数解,
∴不等式组的解集为3-2a<x<20,
∴14≤3-2a<15,
故选:A
【点睛】
本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a<15是解此题的关键.
8、D
【解析】
试题分析:
解:由图形可得出:甲所用铁丝的长度为:2a+2b,
乙所用铁丝的长度为:2a+2b,
丙所用铁丝的长度为:2a+2b,
故三种方案所用铁丝一样长.
故选D.
考点:生活中的平移现象
9、C
【解析】
过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可.
【详解】
延长EP、FP分别交AB、BC于G、H,
则由PD∥AB,PE∥BC,PF∥AC,可得,
四边形PGBD,EPHC是平行四边形,
∴PG=BD,PE=HC,
又△ABC是等边三角形,
又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,
∴PF=PG=BD,PD=DH,
又△ABC的周长为12,
∴PD+PE+PF=DH+HC+BD=BC=×12=4,
故选C.
【点睛】
本题主要考查了平行四边形的判定及性质以及等边三角形的判定及性质,等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.
10、D
【解析】
试题解析:A. 与不是同类二次根式,不能合并,故该选项错误;
B.,故原选项错误;
C. ,故原选项错误;
D. ,故该选项正确.
故选D.
11、C
【解析】
根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.
【详解】
A.反比例函数的图像是双曲线,正确;
B.k=2>0,图象位于一、三象限,正确;
C.在每一象限内,y的值随x的增大而减小,错误;
D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.
故选C.
【点睛】
本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.
12、C
【解析】
由极差、众数、中位数、平均数的定义对四个选项一一判断即可.
【详解】
A.极差为5﹣1.5=3.5,此选项正确;
B.1.5个数最多,为2个,众数是1.5,此选项正确;
C.将式子由小到大排列为:1.5,1.5,2,2.5,3,4,4.5,5,中位数为×(2.5+3)=2.75,此选项错误;
D.平均数为:×(1.5+1.5+2+2.5+3+4+4.5+5)=3,此选项正确.
故选C.
【点睛】
本题主要考查平均数、众数、中位数、极差的概念,其中在求中位数的时候一定要将给出的数据按从大到小或者从小到大的顺序排列起来再进行求解.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1.
【解析】
连接AF,由E是CD的中点、FC=2BF以及AB=2、AD=3可知AB=FC,BF=CE,则可证△ABF≌△FCE,进一步可得到△AFE是等腰直角三角形,则∠AEF=45°.
【详解】
解:连接AF,
∵E是CD的中点,
∴CE=,AB=2,
∵FC=2BF,AD=3,
∴BF=1,CF=2,
∴BF=CE,FC=AB,
∵∠B=∠C=90°,
∴△ABF≌△FCE,
∴AF=EF,∠BAF=∠CFE,∠AFB=∠FEC,
∴∠AFE=90°,
∴△AFE是等腰直角三角形,
∴∠AEF=45°,
∴tan∠AEF=1.
故答案为:1.
【点睛】
本题结合三角形全等考查了三角函数的知识.
14、
【解析】
直接根据平方根的定义求解即可(需注意一个正数有两个平方根).
【详解】
解:2的平方根是故答案为.
【点睛】
本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
15、1
【解析】
,
,
x=1,
代入最简公分母,x=1是方程的解.
16、-4
【解析】
:由反比例函数解析式可知:系数,
∵S△AOB=2即,∴;
又由双曲线在二、四象限k<0,∴k=-4
17、
【解析】
试题分析:用周长除以2π即为圆锥的底面半径;根据圆锥的侧面积=×侧面展开图的弧长×母线长可得圆锥的母线长,利用勾股定理可得圆锥的高.
试题解析:∵圆锥的底面周长为6π,
∴圆锥的底面半径为 6π÷2π="3,"
∵圆锥的侧面积=×侧面展开图的弧长×母线长,
∴母线长=2×12π÷6π="4,"
∴这个圆锥的高是
考点:圆锥的计算.
18、②③④
【解析】
试题解析:根据已知条件不能推出OA=OD,∴①错误;
∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,
∴DE=DF,∠AED=∠AFD=90°,
在Rt△AED和Rt△AFD中,
,
∴Rt△AED≌Rt△AFD(HL),
∴AE=AF,
∵AD平分∠BAC,
∴AD⊥EF,∴②正确;
∵∠BAC=90°,∠AED=∠AFD=90°,
∴四边形AEDF是矩形,
∵AE=AF,
∴四边形AEDF是正方形,∴③正确;
∵AE=AF,DE=DF,
∴AE2+DF2=AF2+DE2,∴④正确;
∴②③④正确,
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);(2),;(3)
【解析】
试题分析:(1)根据反比例函数图象上点的坐标特征易得k=2;
(2)作BH⊥AD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,2),则AH=2﹣1,BH=2﹣1,可判断△ABH为等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根据特殊角的三角函数值得tan∠DAC=;由于AD⊥y轴,则OD=1,AD=2,然后在Rt△OAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,﹣1),于是可根据待定系数法求出直线AC的解析式为y=x﹣1;
(3)利用M点在反比例函数图象上,可设M点坐标为(t,)(0<t<2),由于直线l⊥x轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(t, t﹣1),则MN=﹣t+1,根据三角形面积公式得到S△CMN=•t•(﹣t+1),再进行配方得到S=﹣(t﹣)2+(0<t<2),最后根据二次函数的最值问题求解.
试题解析:(1)把A(2,1)代入y=,得k=2×1=2;
(2)作BH⊥AD于H,如图1,
把B(1,a)代入反比例函数解析式y=,得a=2,
∴B点坐标为(1,2),
∴AH=2﹣1,BH=2﹣1,
∴△ABH为等腰直角三角形,∴∠BAH=45°,
∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,
∴tan∠DAC=tan30°=;
∵AD⊥y轴,∴OD=1,AD=2,∵tan∠DAC==,
∴CD=2,∴OC=1,
∴C点坐标为(0,﹣1),
设直线AC的解析式为y=kx+b,
把A(2,1)、C(0,﹣1)代入得 ,解得 ,
∴直线AC的解析式为y=x﹣1;
(3)设M点坐标为(t,)(0<t<2),
∵直线l⊥x轴,与AC相交于点N,∴N点的横坐标为t,∴N点坐标为(t, t﹣1),
∴MN=﹣(t﹣1)=﹣t+1,
∴S△CMN=•t•(﹣t+1)=﹣t2+t+=﹣(t﹣)2+(0<t<2),
∵a=﹣<0,∴当t=时,S有最大值,最大值为.
20、(1)x=1,y=;(2)小华的打车总费用为18元.
【解析】
试题分析:(1)根据表格内容列出关于x、y的方程组,并解方程组.
(2)根据里程数和时间来计算总费用.
试题解析:
(1)由题意得,
解得;
(2)小华的里程数是11km,时间为14min.
则总费用是:11x+14y=11+7=18(元).
答:总费用是18元.
21、(1)5.3(2)见解析(3)2.5或6.9
【解析】
(1)(2)按照题意取点、画图、测量即可.(3)中需要将DE=2OE转换为y与x的函数关系,注意DE为非负数,函数为分段函数.
【详解】
(1)根据题意取点、画图、测量的x=6时,y=5.3
故答案为5.3
(2)根据数据表格画图象得
(3)当DE=2OE时,问题可以转化为折线y= 与(2)中图象的交点
经测量得x=2.5或6.9时DE=2OE.
故答案为2.5或6.9
【点睛】
动点问题的函数图象探究题,考查了函数图象的画法,应用了数形结合思想和转化的数学思想.
22、 (1) 2﹣ ;(2)见解析
【解析】
分析:(1)先求得:∠CAE=45°-15°=30°,根据直角三角形30°角的性质可得AC=2CE=2,再得∠ECD=90°-60°=30°,设ED=x,则CD=2x,利用勾股定理得:x=1,求得x的值,可得BD的长;
(2)如图2,连接CM,先证明△ACE≌△BCF,则∠BFC=∠AEC=90°,证明C、M、B、F四点共圆,则∠BCM=∠MFB=45°,由等腰三角形三线合一的性质可得AM=BM.
详解:(1)∵∠ACB=90°,AC=BC,
∴∠CAB=45°,
∵∠BAD=15°,
∴∠CAE=45°﹣15°=30°,
Rt△ACE中,CE=1,
∴AC=2CE=2,
Rt△CED中,∠ECD=90°﹣60°=30°,
∴CD=2ED,
设ED=x,则CD=2x,
∴CE=x,
∴x=1,
x=,
∴CD=2x=,
∴BD=BC﹣CD=AC﹣CD=2﹣;
(2)如图2,连接CM,
∵∠ACB=∠ECF=90°,
∴∠ACE=∠BCF,
∵AC=BC,CE=CF,
∴△ACE≌△BCF,
∴∠BFC=∠AEC=90°,
∵∠CFE=45°,
∴∠MFB=45°,
∵∠CFM=∠CBA=45°,
∴C、M、B、F四点共圆,
∴∠BCM=∠MFB=45°,
∴∠ACM=∠BCM=45°,
∵AC=BC,
∴AM=BM.
点睛:本题考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、等腰三角形三线合一的性质、直角三角形30°角的性质和勾股定理,第二问有难度,构建辅助线,证明△ACE≌△BCF是关键.
23、 (1)35元;(2)30元.
【解析】
(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)×销售量,从而列出关系式,利用配方法得出最值;
(2)令w=2000,然后解一元二次方程,从而求出销售单价.
【详解】
解:(1)由题意,得:
W=(x-20)×y
=(x-20)(-10x+1)
=-10x2+700x-10000
=-10(x-35)2+2250
当x=35时,W取得最大值,最大值为2250,
答:当销售单价定为35元时,每月可获得最大利润为2250元;
(2)由题意,得:,
解得:,,
销售单价不得高于32元,
销售单价应定为30元.
答:李明想要每月获得2000元的利润,销售单价应定为30元.
【点睛】
本题考查二次函数的性质及其应用,还考查抛物线的基本性质,另外将实际问题转化为求函数最值问题,从而来解决实际问题.
24、(1)1;(2)证明见解析;(1)点坐标为.
【解析】
由点B的坐标,利用反比例函数图象上点的坐标特征可求出k值;
设A点坐标为,则D点坐标为,P点坐标为,C点坐标为,进而可得出PB,PC,PA,PD的长度,由四条线段的长度可得出,结合可得出∽,由相似三角形的性质可得出,再利用“同位角相等,两直线平行”可证出;
由四边形ABCD的面积和的面积相等可得出,利用三角形的面积公式可得出关于a的方程,解之取其负值,再将其代入P点的坐标中即可求出结论.
【详解】
解:点在反比例函数的图象,
.
故答案为:1.
证明:反比例函数解析式为,
设A点坐标为
轴于点C,轴于点D,
点坐标为,P点坐标为,C点坐标为,
,,,,
,,
.
又,
∽,
,
.
解:四边形ABCD的面积和的面积相等,
,
,
整理得:,
解得:,舍去,
点坐标为.
【点睛】
本题考查了反比例函数图象上点的坐标特征、相似三角形的判定与性质、平行线的判定以及三角形的面积,解题关键是:根据点的坐标,利用反比例函数图象上点的坐标特征求出k值;利用相似三角形的判定定理找出∽;由三角形的面积公式,找出关于a的方程.
25、(1)5,1 (2)当0<x≤2时,y=5x,当x>2时,y关于x的函数解析式为y=4x+2 (3)1.6元.
【解析】
(1)结合函数图象与表格即可得出购买量为函数的自变量,再根据购买2千克花了10元钱即可得出a值,结合超过2千克部分的种子价格打8折可得出b值;
(2)分段函数,当0≤x≤2时,设线段OA的解析式为y=kx;当x>2时,设关系式为y=k1x+b,然后将(2,10),且x=3时,y=1,代入关系式即可求出k,b的值,从而确定关系式;
(3)代入(2)的解析式即可解答.
【详解】
解:(1)结合函数图象以及表格即可得出购买量是函数的自变量x,
∵10÷2=5,
∴a=5,b=2×5+5×0.8=1.
故答案为a=5,b=1.
(2)当0≤x≤2时,设线段OA的解析式为y=kx,
∵y=kx的图象经过(2,10),
∴2k=10,解得k=5,
∴y=5x;
当x>2时,设y与x的函数关系式为:y=x+b
∵y=kx+b的图象经过点(2,10),且x=3时,y=1,
,解得,
∴当x>2时,y与x的函数关系式为:y=4x+2.
∴y关于x的函数解析式为: ;
(3)甲农户将8元钱全部用于购买该玉米种子,即5x=8,解得x=1.6,即甲农户购买玉米种子1.6千克;如果他们两人合起来购买,共购买玉米种子(1.6+4)=5.6千克,这时总费用为:y=4×5.6+2=24.4元.
(8+4×4+2)−24.4=1.6(元).
答:如果他们两人合起来购买,可以比分开购买节约1.6元.
【点睛】
本题主要考查了一次函数的应用和待定系数法求一次函数解析式,根据已知得出图表中点的坐标是解题的关键.注意:求正比例函数,只要一对x,y的值就可以;而求一次函数y=kx+b,则需要两组x,y的值.
26、(1)1件;(2)第40天,利润最大7200元;(3)46天
【解析】
试题分析:(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可;
(2)设利润为y元,则当1≤x<50时,y=﹣2x2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;
(3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元.
试题解析:解:(1)∵n与x成一次函数,∴设n=kx+b,将x=1,m=198,x=3,m=194代入,得:, 解得:,
所以n关于x的一次函数表达式为n=-2x+200;
当x=10时,n=-2×10+200=1.
(2)设销售该产品每天利润为y元,y关于x的函数表达式为:
当1≤x<50时,y=-2x2+160x+4000=-2(x-40)2+7200,
∵-2<0,∴当x=40时,y有最大值,最大值是7200;
当50≤x≤90时,y=-120x+12000,
∵-120<0,∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;
综上所述:当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;
(3)在该产品销售的过程中,共有46天销售利润不低于5400元.
27、(1)y=﹣x2+4;(2)①E(5,9);②1.
【解析】
(1)待定系数法即可解题,
(2)①求出直线DA的解析式,根据顶点E在直线DA上,设出E的坐标,带入即可求解;②AB扫过的面积是平行四边形ABGE,根据S四边形ABGE=S矩形IOKH﹣S△AOB﹣S△AEI﹣S△EHG﹣S△GBK,求出点B(2,0),G(7,5),A(0,4),E(5,9),根据坐标几何含义即可解题.
【详解】
解:(1)∵A(0,4),B(2,0),C(﹣2,0)
∴二次函数的图象的顶点为A(0,4),
∴设二次函数表达式为y=ax2+4,
将B(2,0)代入,得4a+4=0,
解得,a=﹣1,
∴二次函数表达式y=﹣x2+4;
(2)①设直线DA:y=kx+b(k≠0),
将A(0,4),D(﹣4,0)代入,得 ,
解得, ,
∴直线DA:y=x+4,
由题意可知,平移后的抛物线的顶点E在直线DA上,
∴设顶点E(m,m+4),
∴平移后的抛物线表达式为y=﹣(x﹣m)2+m+4,
又∵平移后的抛物线过点B(2,0),
∴将其代入得,﹣(2﹣m)2+m+4=0,
解得,m1=5,m2=0(不合题意,舍去),
∴顶点E(5,9),
②如图,连接AB,过点B作BL∥AD交平移后的抛物线于点G,连结EG,
∴四边形ABGE的面积就是图象A,B两点间的部分扫过的面积,
过点G作GK⊥x轴于点K,过点E作EI⊥y轴于点I,直线EI,GK交于点H.
由点A(0,4)平移至点E(5,9),可知点B先向右平移5个单位,再向上平移5个单位至点G.
∵B(2,0),∴点G(7,5),
∴GK=5,OB=2,OK=7,
∴BK=OK﹣OB=7﹣2=5,
∵A(0,4),E(5,9),
∴AI=9﹣4=5,EI=5,
∴EH=7﹣5=2,HG=9﹣5=4,
∴S四边形ABGE=S矩形IOKH﹣S△AOB﹣S△AEI﹣S△EHG﹣S△GBK
=7×9﹣×2×4﹣×5×5﹣×2×4﹣×5×5
=63﹣8﹣25
=1
答:图象A,B两点间的部分扫过的面积为1.
【点睛】
本题考查了二次函数解析式的求法,二次函数的图形和性质,二次函数的实际应用,难度较大,建立面积之间的等量关系是解题关键.
广东省东莞市寮步镇信义学校2023-2024学年数学九上期末达标测试试题含答案: 这是一份广东省东莞市寮步镇信义学校2023-2024学年数学九上期末达标测试试题含答案,共8页。试卷主要包含了二次函数y=2-3的顶点坐标是等内容,欢迎下载使用。
广东省东莞市寮步镇信义学校2023-2024学年数学八上期末质量检测模拟试题含答案: 这是一份广东省东莞市寮步镇信义学校2023-2024学年数学八上期末质量检测模拟试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,如果代数式,下列说法正确的是等内容,欢迎下载使用。
2022-2023学年广东省东莞市寮步镇信义学校七下数学期末学业水平测试试题含答案: 这是一份2022-2023学年广东省东莞市寮步镇信义学校七下数学期末学业水平测试试题含答案,共6页。试卷主要包含了在四边形中,给出下列条件等内容,欢迎下载使用。