|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年福建省泉州市石狮市中考数学模拟试题含解析
    立即下载
    加入资料篮
    2021-2022学年福建省泉州市石狮市中考数学模拟试题含解析01
    2021-2022学年福建省泉州市石狮市中考数学模拟试题含解析02
    2021-2022学年福建省泉州市石狮市中考数学模拟试题含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年福建省泉州市石狮市中考数学模拟试题含解析

    展开
    这是一份2021-2022学年福建省泉州市石狮市中考数学模拟试题含解析,共25页。试卷主要包含了答题时请按要求用笔,如图,在平面直角坐标系中,A,4的平方根是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列各数中,相反数等于本身的数是( )
    A.–1 B.0 C.1 D.2
    2.在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(3,0),在y轴的正半轴上取一点C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是(  )
    A.(0,) B.(,0) C.(0,2) D.(2,0)
    3.如图,AB∥CD,FE⊥DB,垂足为E,∠1=60°,则∠2的度数是(  )

    A.60° B.50° C.40° D.30°
    4.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是(  )

    A. B. C. D.
    5.规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论: ①方程x2+2x﹣8=0是倍根方程;
    ②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;
    ③若关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,则抛物线y=ax2﹣6ax+c与x轴的公共点的坐标是(2,0)和(4,0);
    ④若点(m,n)在反比例函数y=的图象上,则关于x的方程mx2+5x+n=0是倍根方程.
    上述结论中正确的有(   )
    A.①② B.③④ C.②③ D.②④
    6.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是(  )
    学生数(人)
    5
    8
    14
    19
    4
    时间(小时)
    6
    7
    8
    9
    10
    A.14,9 B.9,9 C.9,8 D.8,9
    7.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是(  )
    A.相交 B.相切 C.相离 D.不能确定
    8.如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a≠0)经过△ABC区域(包括边界),则a的取值范围是(  )

    A. 或 
    B. 或 
    C. 或
    D.
    9.若抛物线y=x2-(m-3)x-m能与x轴交,则两交点间的距离最值是( )
    A.最大值2, B.最小值2 C.最大值2 D.最小值2
    10.4的平方根是( )
    A.4 B.±4 C.±2 D.2
    11.不等式组的解集表示在数轴上正确的是(  )
    A. B. C. D.
    12.某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是(  )
    A.0.69×10﹣6 B.6.9×10﹣7 C.69×10﹣8 D.6.9×107
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.因式分解:_________________.
    14.如图,正五边形ABCDE和正三角形AMN都是⊙O的内接多边形,则∠BOM=_______.

    15.⊙M的圆心在一次函数y=x+2图象上,半径为1.当⊙M与y轴相切时,点M的坐标为_____.

    16.若点(,1)与(﹣2,b)关于原点对称,则=_______.
    17.如果2,那么=_____(用向量,表示向量).
    18.分解因式a3﹣6a2+9a=_________________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HF与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米).
    (参考数据:cos75°≈0.2588, sin75°≈0.9659,tan75°≈3.732,,)

    20.(6分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.

    21.(6分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.
    如图1,当t=3时,求DF的长.如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.
    22.(8分)某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查了部分学生的数学成绩,并将抽样的数据进行了如下整理.
    (1)填空_______,_______,数学成绩的中位数所在的等级_________.
    (2)如果该校有1200名学生参加了本次模拟测,估计等级的人数;
    (3)已知抽样调查学生的数学成绩平均分为102分,求A级学生的数学成绩的平均分数.
    ①如下分数段整理样本
    等级等级
    分数段
    各组总分
    人数



    4


    843



    574



    171
    2
    ②根据上表绘制扇形统计图

    23.(8分)如图,在△ABC中,BD平分∠ABC,AE⊥BD于点O,交BC于点E,AD∥BC,连接CD.
    (1)求证:AO=EO;
    (2)若AE是△ABC的中线,则四边形AECD是什么特殊四边形?证明你的结论.

    24.(10分)已知平行四边形.
    尺规作图:作的平分线交直线于点,交延长线于点(要求:尺规作图,保留作图痕迹,不写作法);在(1)的条件下,求证:.
    25.(10分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:
    (1)△BCE∽△ADE;
    (2)AB•BC=BD•BE.

    26.(12分)已知抛物线F:y=x1+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).

    (1)求抛物线F的解析式;
    (1)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x1,y1)(点A在第二象限),求y1﹣y1的值(用含m的式子表示);
    (3)在(1)中,若m=,设点A′是点A关于原点O的对称点,如图1.
    ①判断△AA′B的形状,并说明理由;
    ②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.
    27.(12分)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上且AB=12cm
    (1)若OB=6cm.
    ①求点C的坐标;
    ②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;
    (2)点C与点O的距离的最大值是多少cm.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    根据相反数的意义,只有符号不同的数为相反数.
    【详解】
    解:相反数等于本身的数是1.
    故选B.
    【点睛】
    本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,1的相反数是1.
    2、A
    【解析】
    直接根据△AOC∽△COB得出OC2=OA•OB,即可求出OC的长,即可得出C点坐标.
    【详解】

    如图,连结AC,CB.    
    依△AOC∽△COB的结论可得:OC2=OA×OB,
    即OC2=1×3=3,
    解得:OC=或− (负数舍去),
    故C点的坐标为(0, ).
    故答案选:A.
    【点睛】
    本题考查了坐标与图形性质,解题的关键是熟练的掌握坐标与图形的性质.
    3、D
    【解析】
    由EF⊥BD,∠1=60°,结合三角形内角和为180°即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.
    【详解】
    解:在△DEF中,∠1=60°,∠DEF=90°,
    ∴∠D=180°-∠DEF-∠1=30°.
    ∵AB∥CD,
    ∴∠2=∠D=30°.
    故选D.
    【点睛】
    本题考查平行线的性质以及三角形内角和为180°,解题关键是根据平行线的性质,找出相等、互余或互补的角.
    4、D
    【解析】
    设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.
    【详解】
    设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,
    ∵△ABC放大到原来的2倍得到△A′B′C,
    ∴2(﹣1﹣x)=a+1,
    解得x=﹣(a+3),
    故选:D.
    【点睛】
    本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.
    5、C
    【解析】
    分析:①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设=2,得到•=2=2,得到当=1时,=2,当=-1时,=-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m,n)在反比例函数y=的图象上,得到mn=4,然后解方程m+5x+n=0即可得到正确的结论;
    详解:①由-2x-8=0,得:(x-4)(x+2)=0, 解得=4,=-2, ∵≠2,或≠2,
    ∴方程-2x-8=0不是倍根方程;故①错误;
    ②关于x的方程+ax+2=0是倍根方程, ∴设=2, ∴•=2=2, ∴=±1,
    当=1时,=2, 当=-1时,=-2, ∴+=-a=±3, ∴a=±3,故②正确;
    ③关于x的方程a-6ax+c=0(a≠0)是倍根方程, ∴=2,
    ∵抛物线y=a-6ax+c的对称轴是直线x=3, ∴抛物线y=a-6ax+c与x轴的交点的坐标是(2,0)和(4,0), 故③正确;
    ④∵点(m,n)在反比例函数y=的图象上, ∴mn=4, 解m+5x+n=0得
    =,=, ∴=4, ∴关于x的方程m+5x+n=0不是倍根方程;
    故选C.
    点睛:本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.
    6、C
    【解析】
    解:观察、分析表格中的数据可得:
    ∵课外阅读时间为1小时的人数最多为11人,
    ∴众数为1.
    ∵将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2,
    ∴中位数为2.
    故选C.
    【点睛】
    本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情况:①当数据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;②当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数.
    7、A
    【解析】
    试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.
    解:∵⊙O的半径为3,圆心O到直线L的距离为2,
    ∵3>2,即:d<r,
    ∴直线L与⊙O的位置关系是相交.
    故选A.
    考点:直线与圆的位置关系.
    8、B
    【解析】
    试题解析:如图所示:

    分两种情况进行讨论:
    当时,抛物线经过点时,抛物线的开口最小,取得最大值抛物线经过△ABC区域(包括边界),的取值范围是:
    当时,抛物线经过点时,抛物线的开口最小,取得最小值抛物线经过△ABC区域(包括边界),的取值范围是:
    故选B.
    点睛:二次函数 二次项系数决定了抛物线开口的方向和开口的大小,
    开口向上,开口向下.
    的绝对值越大,开口越小.
    9、D
    【解析】
    设抛物线与x轴的两交点间的横坐标分别为:x1,x2,
    由韦达定理得:
    x1+x2=m-3,x1•x2=-m,
    则两交点间的距离d=|x1-x2|== ,
    ∴m=1时,dmin=2.
    故选D.
    10、C
    【解析】
    根据平方根的定义,求数a的平方根,也就是求一个数x,使得x1=a,则x就是a的平方根,由此即可解决问题.
    【详解】
    ∵(±1)1=4,
    ∴4的平方根是±1.
    故选D.
    【点睛】
    本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
    11、C
    【解析】
    根据题意先解出的解集是,
    把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右;
    表示时要注意方向向左,起始的标记为实心圆点,
    综上所述C的表示符合这些条件.
    故应选C.
    12、B
    【解析】
    试题解析:0.00 000 069=6.9×10-7,
    故选B.
    点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    提公因式法和应用公式法因式分解.
    【详解】
    解: .
    故答案为:
    【点睛】
    本题考查因式分解,要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.
    14、48°
    【解析】
    连接OA,分别求出正五边形ABCDE和正三角形AMN的中心角,结合图形计算即可.
    【详解】
    连接OA,

    ∵五边形ABCDE是正五边形,
    ∴∠AOB==72°,
    ∵△AMN是正三角形,
    ∴∠AOM==120°,
    ∴∠BOM=∠AOM-∠AOB=48°,
    故答案为48°.
    点睛:本题考查的是正多边形与圆的有关计算,掌握正多边形的中心角的计算公式是解题的关键.
    15、(1,)或(﹣1,)
    【解析】
    设当⊙M与y轴相切时圆心M的坐标为(x,x+2),再根据⊙M的半径为1即可得出y的值.
    【详解】
    解:∵⊙M的圆心在一次函数y=x+2的图象上运动,
    ∴设当⊙M与y轴相切时圆心M的坐标为(x, x+2),
    ∵⊙M的半径为1,
    ∴x=1或x=−1,
    当x=1时,y=,
    当x=−1时,y=.
    ∴P点坐标为:(1, )或(−1, ).
    故答案为(1, )或(−1, ).
    【点睛】
    本题考查了切线的性质与一次函数图象上点的坐标特征,解题的关键是熟练的掌握切线的性质与一次函数图象上点的坐标特征.
    16、.
    【解析】
    ∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴==.故答案为.
    考点:关于原点对称的点的坐标.
    17、
    【解析】
    ∵2(+)=+,∴2+2=+,∴=-2,
    故答案为.
    点睛:本题看成平面向量、一元一次方程等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.
    18、a(a﹣3)1 .
    【解析】
    a3﹣6a1+9a
    =a(a1﹣6a+9)
    =a(a﹣3)1.
    故答案为a(a﹣3)1.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、3.05米.
    【解析】
    延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.
    【详解】
    延长FE交CB的延长线于M,过A作AG⊥FM于G,
    在Rt△ABC中,tan∠ACB=,
    ∴AB=BC•tan75°=0.60×3.732=2.2392,
    ∴GM=AB=2.2392,
    在Rt△AGF中,∵∠FAG=∠FHD=60°,sin∠FAG=,
    ∴sin60°=,
    ∴FG=2.165,
    ∴DM=FG+GM﹣DF≈3.05米.
    答:篮框D到地面的距离是3.05米.

    考点:解直角三角形的应用.
    20、米.
    【解析】
    先求抛物线对称轴,再根据待定系数法求抛物线解析式,再求函数最大值.
    【详解】
    由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,
    设抛物线的表达式为:y=ax2+bx+1(a≠0),
    则据题意得:,
    解得:,
    ∴羽毛球飞行的路线所在的抛物线的表达式为:y=﹣x2+x+1,
    ∵y=﹣(x﹣4)2+,
    ∴飞行的最高高度为:米.
    【点睛】
    本题考核知识点:二次函数的应用. 解题关键点:熟记二次函数的基本性质.
    21、(1)3;(2)∠DEF的大小不变,tan∠DEF=;(3)或.
    【解析】
    (1)当t=3时,点E为AB的中点,
    ∵A(8,0),C(0,6),
    ∴OA=8,OC=6,
    ∵点D为OB的中点,
    ∴DE∥OA,DE=OA=4,
    ∵四边形OABC是矩形,
    ∴OA⊥AB,
    ∴DE⊥AB,
    ∴∠OAB=∠DEA=90°,
    又∵DF⊥DE,
    ∴∠EDF=90°,
    ∴四边形DFAE是矩形,
    ∴DF=AE=3;
    (2)∠DEF的大小不变;理由如下:
    作DM⊥OA于M,DN⊥AB于N,如图2所示:

    ∵四边形OABC是矩形,
    ∴OA⊥AB,
    ∴四边形DMAN是矩形,
    ∴∠MDN=90°,DM∥AB,DN∥OA,
    ∴, ,
    ∵点D为OB的中点,
    ∴M、N分别是OA、AB的中点,
    ∴DM=AB=3,DN=OA=4,
    ∵∠EDF=90°,
    ∴∠FDM=∠EDN,
    又∵∠DMF=∠DNE=90°,
    ∴△DMF∽△DNE,
    ∴,
    ∵∠EDF=90°,
    ∴tan∠DEF=;
    (3)作DM⊥OA于M,DN⊥AB于N,
    若AD将△DEF的面积分成1:2的两部分,
    设AD交EF于点G,则点G为EF的三等分点;
    ①当点E到达中点之前时,如图3所示,NE=3﹣t,

    由△DMF∽△DNE得:MF=(3﹣t),
    ∴AF=4+MF=﹣t+,
    ∵点G为EF的三等分点,
    ∴G(,),
    设直线AD的解析式为y=kx+b,
    把A(8,0),D(4,3)代入得: ,
    解得: ,
    ∴直线AD的解析式为y=﹣x+6,
    把G(,)代入得:t=;
    ②当点E越过中点之后,如图4所示,NE=t﹣3,

    由△DMF∽△DNE得:MF=(t﹣3),
    ∴AF=4﹣MF=﹣t+,
    ∵点G为EF的三等分点,
    ∴G(,),
    代入直线AD的解析式y=﹣x+6得:t=;
    综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为或.
    考点:四边形综合题.
    22、(1)6;8;B;(2)120人;(3)113分.
    【解析】
    (1)根据表格中的数据和扇形统计图中的数据可以求得本次抽查的人数,从而可以得到m、n的值,从而可以得到数学成绩的中位数所在的等级;
    (2)根据表格中的数据可以求得D等级的人数;
    (3)根据表格中的数据,可以计算出A等级学生的数学成绩的平均分数.
    【详解】
    (1)本次抽查的学生有:(人),

    数学成绩的中位数所在的等级B,
    故答案为:6,11,B;
    (2)120(人),
    答:D等级的约有120人;
    (3)由表可得,
    A等级学生的数学成绩的平均分数:(分),
    即A等级学生的数学成绩的平均分是113分.
    【点睛】
    本题考查了扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.
    23、(1)详见解析;(2)平行四边形.
    【解析】
    (1)由“三线合一”定理即可得到结论;
    (2)由AD∥BC,BD平分∠ABC,得到∠ADB=∠ABD,由等腰三角形的判定得到AD=AB,根据垂直平分线的性质有AB=BE,于是AD=BE,进而得到AD=EC,根据平行四边形的判定即可得到结论.
    【详解】
    证明:(1)∵BD平分∠ABC,AE⊥BD,
    ∴AO=EO;
    (2)平行四边形,
    证明:∵AD∥BC,
    ∴∠ADB=∠ABD,
    ∴AD=AB,
    ∵OA=OE,OB⊥AE,
    ∴AB=BE,
    ∴AD=BE,
    ∵BE=CE,
    ∴AD=EC,
    ∴四边形AECD是平行四边形.

    【点睛】
    考查等腰直角三角形的性质以及平行四边形的判定,掌握平行四边形的判定方法是解题的关键.
    24、(1)见解析;(2)见解析.
    【解析】
    试题分析:(1)作∠BAD的平分线交直线BC于点E,交DC延长线于点F即可;
    (2)先根据平行四边形的性质得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠1.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠1,据此可得出结论.
    试题解析:(1)如图所示,AF即为所求;

    (2)∵四边形ABCD是平行四边形,
    ∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠1.
    ∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠1,∴CE=CF.
    考点:作图—基本作图;平行四边形的性质.
    25、(1)见解析;(2)见解析.
    【解析】
    (1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.
    (2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.
    【详解】
    证明:(1)∵AD=DC,
    ∴∠DAC=∠DCA,
    ∵DC2=DE•DB,
    ∴=,∵∠CDE=∠BDC,
    ∴△CDE∽△BDC,
    ∴∠DCE=∠DBC,
    ∴∠DAE=∠EBC,
    ∵∠AED=∠BEC,
    ∴△BCE∽△ADE,
    (2)∵DC2=DE•DB,AD=DC
    ∴AD2=DE•DB,
    同法可得△ADE∽△BDA,
    ∴∠DAE=∠ABD=∠EBC,
    ∵△BCE∽△ADE,
    ∴∠ADE=∠BCE,
    ∴△BCE∽△BDA,
    ∴=,
    ∴AB•BC=BD•BE.

    【点睛】
    本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.
    26、(1)y=x1+x;(1)y1﹣y1=;(3)①△AA′B为等边三角形,理由见解析;②平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(1,)、(﹣ )和(﹣,﹣1)
    【解析】
    (1)根据点的坐标,利用待定系数法即可求出抛物线F的解析式;
    (1)将直线l的解析式代入抛物线F的解析式中,可求出x1、x1的值,利用一次函数图象上点的坐标特征可求出y1、y1的值,做差后即可得出y1-y1的值;
    (3)根据m的值可得出点A、B的坐标,利用对称性求出点A′的坐标.
    ①利用两点间的距离公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B为等边三角形;
    ②根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P,设点P的坐标为(x,y),分三种情况考虑:(i)当A′B为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(ii)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(iii)当AA′为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标.综上即可得出结论.
    【详解】
    (1)∵抛物线y=x1+bx+c的图象经过点(0,0)和(﹣,0),
    ∴,解得:,
    ∴抛物线F的解析式为y=x1+x.
    (1)将y=x+m代入y=x1+x,得:x1=m,
    解得:x1=﹣,x1=,
    ∴y1=﹣+m,y1=+m,
    ∴y1﹣y1=(+m)﹣(﹣+m)=(m>0).
    (3)∵m=,
    ∴点A的坐标为(﹣,),点B的坐标为(,1).
    ∵点A′是点A关于原点O的对称点,
    ∴点A′的坐标为(,﹣).
    ①△AA′B为等边三角形,理由如下:
    ∵A(﹣,),B(,1),A′(,﹣),
    ∴AA′=,AB=,A′B=,
    ∴AA′=AB=A′B,
    ∴△AA′B为等边三角形.
    ②∵△AA′B为等边三角形,
    ∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,设点P的坐标为(x,y).
    (i)当A′B为对角线时,有,
    解得,
    ∴点P的坐标为(1,);
    (ii)当AB为对角线时,有,
    解得:,
    ∴点P的坐标为(﹣,);
    (iii)当AA′为对角线时,有,
    解得:,
    ∴点P的坐标为(﹣,﹣1).
    综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(1,)、(﹣ )和(﹣,﹣1).
    【点睛】
    本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等边三角形的判定与性质以及菱形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(1)将一次函数解析式代入二次函数解析式中求出x1、x1的值;(3)①利用勾股定理(两点间的距离公式)求出AB、AA′、A′B的值;②分A′B为对角线、AB为对角线及AA′为对角线三种情况求出点P的坐标.
    27、(1)①点C的坐标为(-3,9);②滑动的距离为6(﹣1)cm;(2)OC最大值1cm.
    【解析】
    试题分析:(1)①过点C作y轴的垂线,垂足为D,根据30°的直角三角形的性质解答即可;②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,根据锐角三角函数和勾股定理解答即可;(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,证得△ACE∽△BCD,利用相似三角形的性质解答即可.
    试题解析:解:(1)①过点C作y轴的垂线,垂足为D,如图1:

    在Rt△AOB中,AB=1,OB=6,则BC=6,
    ∴∠BAO=30°,∠ABO=60°,
    又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,
    ∴BD=3,CD=3,
    所以点C的坐标为(﹣3,9);
    ②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:

    AO=1×cos∠BAO=1×cos30°=6.
    ∴A'O=6﹣x,B'O=6+x,A'B'=AB=1
    在△A'O B'中,由勾股定理得,
    (6﹣x)2+(6+x)2=12,解得:x=6(﹣1),
    ∴滑动的距离为6(﹣1);
    (2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,如图3:

    则OE=﹣x,OD=y,
    ∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,
    ∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,
    ∴△ACE∽△BCD,
    ∴,即,
    ∴y=﹣x,
    OC2=x2+y2=x2+(﹣x)2=4x2,
    ∴当|x|取最大值时,即C到y轴距离最大时,OC2有最大值,即OC取最大值,如图,即当C'B'旋转到与y轴垂直时.此时OC=1,
    故答案为1.
    考点:相似三角形综合题.

    相关试卷

    2024年福建省泉州市石狮市中考二模数学试题(含解析): 这是一份2024年福建省泉州市石狮市中考二模数学试题(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年福建省泉州市石狮市中考二模数学试题(含解析): 这是一份2023年福建省泉州市石狮市中考二模数学试题(含解析),共24页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2023年福建省泉州市石狮市中考数学质检试卷(含答案): 这是一份2023年福建省泉州市石狮市中考数学质检试卷(含答案),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map