浙江省苍南县2021-2022学年中考数学押题卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是( )
A. B. C. D.
2.若分式方程无解,则a的值为( )
A.0 B.-1 C.0或-1 D.1或-1
3.下列计算正确的是( )
A.a+a=2a B.b3•b3=2b3 C.a3÷a=a3 D.(a5)2=a7
4.如图,在△ABC中,点D,E分别在边AB,AC上,且,则的值为
A. B. C. D.
5.一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164,168,185,则这组数据的中位数为( )
A.172 B.171 C.170 D.168
6.在平面直角坐标系中,有两条抛物线关于x轴对称,且他们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为y=+6x+m,则m的值是 ( )
A.-4或-14 B.-4或14 C.4或-14 D.4或14
7.点P(4,﹣3)关于原点对称的点所在的象限是( )
A.第四象限 B.第三象限 C.第二象限 D.第一象限
8.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )
A. B. C. D.
9.计算﹣1﹣(﹣4)的结果为( )
A.﹣3 B.3 C.﹣5 D.5
10.平面直角坐标系中,若点A(a,﹣b)在第三象限内,则点B(b,a)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在平面直角坐标系中,矩形活动框架ABCD的长AB为2,宽AD为,其中边AB在x轴上,且原点O为AB的中点,固定点A、B,把这个矩形活动框架沿箭头方向推,使D落在y轴的正半轴上点D′处,点C的对应点C′的坐标为______.
12.分解因式:x2﹣1=____.
13.若顺次连接四边形ABCD四边中点所得的四边形是矩形,则原四边形的对角线AC、BD所满足的条件是_____.
14.如图,矩形ABCD,AB=2,BC=1,将矩形ABCD绕点A顺时针旋转90°得矩形AEFG,连接CG、EG,则∠CGE=________.
15.若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是______.
16.有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是__.
三、解答题(共8题,共72分)
17.(8分)如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0
(1)求点A、B、D的坐标;
(2)若△AOD与△BPC相似,求a的值;
(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.
18.(8分)先化简,然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.
19.(8分)如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:△ADE≌△CBF;求证:四边形BFDE为矩形.
20.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,边结DE,OE、OD,求证:DE是⊙O的切线.
21.(8分)如图,已知∠AOB与点M、N求作一点P,使点P到边OA、OB的距离相等,且PM=PN(保留作图痕迹,不写作法)
22.(10分)在“双十一”购物街中,某儿童品牌玩具专卖店购进了两种玩具,其中类玩具的金价比玩具的进价每个多元.经调查发现:用元购进类玩具的数量与用元购进类玩具的数量相同.求的进价分别是每个多少元?该玩具店共购进了两类玩具共个,若玩具店将每个类玩具定价为元出售,每个类玩具定价元出售,且全部售出后所获得的利润不少于元,则该淘宝专卖店至少购进类玩具多少个?
23.(12分)如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF.已知BC=1.
(1)若M为AC的中点,求CF的长;
(2)随着点M在边AC上取不同的位置,
①△PFM的形状是否发生变化?请说明理由;
②求△PFM的周长的取值范围.
24.问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=1.点P是AC上的一个动点,过点P作MN⊥AC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上).设AP的长为x(0≤x≤4),△AMN的面积为y.
建立模型:(1)y与x的函数关系式为:,
解决问题:(1)为进一步研究y随x变化的规律,小明想画出此函数的图象.请你补充列表,并在如图的坐标系中画出此函数的图象:
x
0
1
1
3
4
y
0
0
(3)观察所画的图象,写出该函数的两条性质: .
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=;
当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=,故选B.
2、D
【解析】
试题分析:在方程两边同乘(x+1)得:x-a=a(x+1),
整理得:x(1-a)=2a,
当1-a=0时,即a=1,整式方程无解,
当x+1=0,即x=-1时,分式方程无解,
把x=-1代入x(1-a)=2a得:-(1-a)=2a,
解得:a=-1,
故选D.
点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件.
3、A
【解析】
根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解.
【详解】
A.a+a=2a,故本选项正确;
B.,故本选项错误;
C. ,故本选项错误;
D.,故本选项错误.
故选:A.
【点睛】
考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,比较基础,掌握运算法则是解题的关键.
4、C
【解析】
∵,∠A=∠A,
∴△ABC∽△AED。∴。
∴。故选C。
5、C
【解析】
先把所给数据从小到大排列,然后根据中位数的定义求解即可.
【详解】
从小到大排列:
150,164,168,168,,172,176,183,185,
∴中位数为:(168+172)÷2=170.
故选C.
【点睛】
本题考查了中位数,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.
6、D
【解析】
根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得.
【详解】
∵一条抛物线的函数表达式为y=x2+6x+m,
∴这条抛物线的顶点为(-3,m-9),
∴关于x轴对称的抛物线的顶点(-3,9-m),
∵它们的顶点相距10个单位长度.
∴|m-9-(9-m)|=10,
∴2m-18=±10,
当2m-18=10时,m=1,
当2m-18=-10时,m=4,
∴m的值是4或1.
故选D.
【点睛】
本题考查了二次函数图象与几何变换,解答本题的关键是掌握二次函数的顶点坐标公式,坐标和线段长度之间的转换,关于x轴对称的点和抛物线的关系.
7、C
【解析】
由题意得点P的坐标为(﹣4,3),根据象限内点的符号特点可得点P1的所在象限.
【详解】
∵设P(4,﹣3)关于原点的对称点是点P1,
∴点P1的坐标为(﹣4,3),
∴点P1在第二象限.
故选 C
【点睛】
本题主要考查了两点关于原点对称,这两点的横纵坐标均互为相反数;符号为(﹣,+)的点在第二象限.
8、C
【解析】
【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.
【详解】画树状图为:
共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,
所以两次抽取的卡片上数字之积为偶数的概率=,
故选C.
【点睛】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
9、B
【解析】
原式利用减法法则变形,计算即可求出值.
【详解】
,
故选:B.
【点睛】
本题主要考查了有理数的加减,熟练掌握有理数加减的运算法则是解决本题的关键.
10、D
【解析】
分析:根据题意得出a和b的正负性,从而得出点B所在的象限.
详解:∵点A在第三象限, ∴a<0,-b<0, 即a<0,b>0, ∴点B在第四象限,故选D.
点睛:本题主要考查的是象限中点的坐标特点,属于基础题型.明确各象限中点的横纵坐标的正负性是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、(2,1)
【解析】
由已知条件得到AD′=AD=,AO=AB=1,根据勾股定理得到OD′==1,于是得到结论.
【详解】
解:∵ AD′=AD=,AO=AB=1,
∴OD′==1,
∵C′D′=2,C′D′∥AB,
∴C′(2,1),
故答案为:(2,1)
【点睛】
本题考查了矩形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.
12、(x+1)(x﹣1).
【解析】
试题解析:x2﹣1=(x+1)(x﹣1).
考点:因式分解﹣运用公式法.
13、AC⊥BD
【解析】
根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.
【详解】
∵四边形EFGH是矩形,
∴∠FEH=90°,
又∵点E、F、分别是AD、AB、各边的中点,
∴EF是三角形ABD的中位线,
∴EF∥BD,
∴∠FEH=∠OMH=90°,
又∵点E、H分别是AD、CD各边的中点,
∴EH是三角形ACD的中位线,
∴EH∥AC,
∴∠OMH=∠COB=90°,
即AC⊥BD.
故答案为:AC⊥BD.
【点睛】
此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质.根据题意画出图形并熟练掌握矩形性质及三角形中位线定理是解题关键.
14、45°
【解析】
试题解析:
如图,连接CE,
∵AB=2,BC=1,
∴DE=EF=1,CD=GF=2,
在△CDE和△GFE中
∴△CDE≌△GFE(SAS),
∴CE=GE,∠CED=∠GEF,
故答案为
15、8
【解析】
解:设边数为n,由题意得,
180(n-2)=3603
解得n=8.
所以这个多边形的边数是8.
16、
【解析】
列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率.
【详解】
解:列表如下:
5
6
7
8
9
5
﹣﹣﹣
(6、5)
(7、5)
(8、5)
(9、5)
6
(5、6)
﹣﹣﹣
(7、6)
(8、6)
(9、6)
7
(5、7)
(6、7)
﹣﹣﹣
(8、7)
(9、7)
8
(5、8)
(6、8)
(7、8)
﹣﹣﹣
(9、8)
9
(5、9)
(6、9)
(7、9)
(8、9)
﹣﹣﹣
所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,
则P(恰好是两个连续整数)=
故答案为.
【点睛】
此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.
三、解答题(共8题,共72分)
17、(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值为.(3)当a=时,D、O、C、B四点共圆.
【解析】
【分析】(1)根据二次函数的图象与x轴相交,则y=0,得出A(a,0),B(3,0),与y轴相交,则x=0,得出D(0,3a).
(2)根据(1)中A、B、D的坐标,得出抛物线对称轴x=,AO=a,OD=3a,代入求得顶点C(,-),从而得PB=3- =,PC=;再分情况讨论:①当△AOD∽△BPC时,根据相似三角形性质得, 解得:a= 3(舍去);
②△AOD∽△CPB,根据相似三角形性质得 ,解得:a1=3(舍),a2=;
(3)能;连接BD,取BD中点M,根据已知得D、B、O在以BD为直径,M(,a)为圆心的圆上,若点C也在此圆上,则MC=MB,根据两点间的距离公式得一个关于a的方程,解之即可得出答案.
【详解】(1)∵y=(x-a)(x-3)(0 ∴A(a,0),B(3,0),
当x=0时,y=3a,
∴D(0,3a);
(2)∵A(a,0),B(3,0),D(0,3a).∴对称轴x=,AO=a,OD=3a,
当x= 时,y=- ,
∴C(,-),
∴PB=3-=,PC=,
①当△AOD∽△BPC时,
∴,
即 ,
解得:a= 3(舍去);
②△AOD∽△CPB,
∴,
即 ,
解得:a1=3(舍),a2= .
综上所述:a的值为;
(3)能;连接BD,取BD中点M,
∵D、B、O三点共圆,且BD为直径,圆心为M(,a),
若点C也在此圆上,
∴MC=MB,
∴ ,
化简得:a4-14a2+45=0,
∴(a2-5)(a2-9)=0,
∴a2=5或a2=9,
∴a1=,a2=-,a3=3(舍),a4=-3(舍),
∵0 ∴a=,
∴当a=时,D、O、C、B四点共圆.
【点睛】本题考查了二次函数、相似三角形的性质、四点共圆等,综合性较强,有一定的难度,正确进行分析,熟练应用相关知识是解题的关键.
18、
【解析】
根据分式的减法和除法可以化简题目中的式子,然后从﹣<x<的范围内选取一个使得原分式有意义的整数作为x的值代入即可解答本题.
【详解】
解:÷(﹣x+1)
=
=
=
=,
当x=﹣2时,原式= .
【点睛】
本题考查分式的化简求值、估算无理数的大小,解答本题的关键是明确分式化简求值的方法.
19、(1)证明见解析;(2)证明见解析.
【解析】
(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;
(2)由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可的值.
【详解】
解:(1)∵DE⊥AB,BF⊥CD,
∴∠AED=∠CFB=90°,
∵四边形ABCD为平行四边形,
∴AD=BC,∠A=∠C,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(AAS);
(2)∵四边形ABCD为平行四边形,
∴CD∥AB,
∴∠CDE+∠DEB=180°,
∵∠DEB=90°,
∴∠CDE=90°,
∴∠CDE=∠DEB=∠BFD=90°,
则四边形BFDE为矩形.
【点睛】
本题考查1.矩形的判定;2.全等三角形的判定与性质;3.平行四边形的性质.
20、详见解析.
【解析】
试题分析:由三角形的中位线得出OE∥AB,进一步利用平行线的性质和等腰三角形性质,找出△OCE和△ODE相等的线段和角,证得全等得出答案即可.
试题解析:证明:∵点E为AC的中点,OC=OB,∴OE∥AB,∴∠EOC=∠B,∠EOD=∠ODB.又∵∠ODB=∠B,∴∠EOC=∠EOD.
在△OCE和△ODE中,∵OC=OD,∠EOC=∠EOD, OE=OE,∴△OCE≌△ODE(SAS),∴∠EDO=∠ECO=90°,∴DE⊥OD,∴DE是⊙O的切线.
点睛:此题考查切线的判定.证明的关键是得到△OCE≌△ODE.
21、见解析
【解析】
作∠AOB的角平分线和线段MN的垂直平分线,它们的交点即是要求作的点P.
【详解】
解:①作∠AOB的平分线OE,②作线段MN的垂直平分线GH,GH交OE于点P.
点P即为所求.
【点睛】
本题考查了角平分线和线段垂直平分线的尺规作法,熟练掌握角平分线和线段垂直平分线的的作图步骤是解答本题的关键.
22、(1)的进价是元,的进价是元;(2)至少购进类玩具个.
【解析】
(1)设的进价为元,则的进价为元,根据用元购进类玩具的数量与用元购进类玩具的数量相同这个等量关系列出方程即可;
(2)设玩具个,则玩具个,结合“玩具点将每个类玩具定价为元出售,每个类玩具定价元出售,且全部售出后所获得利润不少于元”列出不等式并解答.
【详解】
解:(1)设的进价为元,则的进价为元
由题意得,
解得,
经检验是原方程的解.
所以(元)
答:的进价是元,的进价是元;
(2)设玩具个,则玩具个
由题意得:
解得.
答:至少购进类玩具个.
【点睛】
本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系,准确的解分式方程或不等式是需要掌握的基本计算能力.
23、(1)CF=;(2)①△PFM的形状是等腰直角三角形,不会发生变化,理由见解析;②△PFM的周长满足:2+2<(1+)y<1+1.
【解析】
(1)由折叠的性质可知,FB=FM,设CF=x,则FB=FM=1﹣x,在Rt△CFM中,根据FM2=CF2+CM2,构建方程即可解决问题;
(2)①△PFM的形状是等腰直角三角形,想办法证明△POF∽△MOC,可得∠PFO=∠MCO=15°,延长即可解决问题;
②设FM=y,由勾股定理可知:PF=PM=y,可得△PFM的周长=(1+)y,由2<y<1,可得结论.
【详解】
(1)∵M为AC的中点,
∴CM=AC=BC=2,
由折叠的性质可知,FB=FM,
设CF=x,则FB=FM=1﹣x,
在Rt△CFM中,FM2=CF2+CM2,即(1﹣x)2=x2+22,
解得,x=,即CF=;
(2)①△PFM的形状是等腰直角三角形,不会发生变化,
理由如下:由折叠的性质可知,∠PMF=∠B=15°,
∵CD是中垂线,
∴∠ACD=∠DCF=15°,
∵∠MPC=∠OPM,
∴△POM∽△PMC,
∴=,
∴=,
∵∠EMC=∠AEM+∠A=∠CMF+∠EMF,
∴∠AEM=∠CMF,
∵∠DPE+∠AEM=90°,∠CMF+∠MFC=90°,∠DPE=∠MPC,
∴∠DPE=∠MFC,∠MPC=∠MFC,
∵∠PCM=∠OCF=15°,
∴△MPC∽△OFC,
∴ ,
∴,
∴,
∵∠POF=∠MOC,
∴△POF∽△MOC,
∴∠PFO=∠MCO=15°,
∴△PFM是等腰直角三角形;
②∵△PFM是等腰直角三角形,设FM=y,
由勾股定理可知:PF=PM=y,
∴△PFM的周长=(1+)y,
∵2<y<1,
∴△PFM的周长满足:2+2<(1+)y<1+1.
【点睛】
本题考查三角形综合题、等腰直角三角形的性质和判定、翻折变换、相似三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.
24、 (1) ①y=;②;(1)见解析;(3)见解析
【解析】
(1)根据线段相似的关系得出函数关系式(1)代入①中函数表达式即可填表(3)画图像,分析即可.
【详解】
(1)设AP=x
①当0≤x≤1时
∵MN∥BD
∴△APM∽△AOD
∴
∴MP=
∵AC垂直平分MN
∴PN=PM=x
∴MN=x
∴y=AP•MN=
②当1<x≤4时,P在线段OC上,
∴CP=4﹣x
∴△CPM∽△COD
∴
∴PM=
∴MN=1PM=4﹣x
∴y==﹣
∴y=
(1)由(1)
当x=1时,y=
当x=1时,y=1
当x=3时,y=
(3)根据(1)画出函数图象示意图可知
1、当0≤x≤1时,y随x的增大而增大
1、当1<x≤4时,y随x的增大而减小
【点睛】
本题考查函数,解题的关键是数形结合思想.
浙江省温州市苍南县2022年中考数学押题试卷含解析: 这是一份浙江省温州市苍南县2022年中考数学押题试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,二次函数y=ax1+bx+c等内容,欢迎下载使用。
浙江省丽水市级名校2021-2022学年中考押题数学预测卷含解析: 这是一份浙江省丽水市级名校2021-2022学年中考押题数学预测卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,今年春节某一天早7,已知点A等内容,欢迎下载使用。
2021-2022学年浙江省温州苍南县联考中考数学模拟预测题含解析: 这是一份2021-2022学年浙江省温州苍南县联考中考数学模拟预测题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列计算结果正确的是,下列说法正确的是等内容,欢迎下载使用。