终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    浙江省东阳市六石初中等三中心校2021-2022学年中考猜题数学试卷含解析

    立即下载
    加入资料篮
    浙江省东阳市六石初中等三中心校2021-2022学年中考猜题数学试卷含解析第1页
    浙江省东阳市六石初中等三中心校2021-2022学年中考猜题数学试卷含解析第2页
    浙江省东阳市六石初中等三中心校2021-2022学年中考猜题数学试卷含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省东阳市六石初中等三中心校2021-2022学年中考猜题数学试卷含解析

    展开

    这是一份浙江省东阳市六石初中等三中心校2021-2022学年中考猜题数学试卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,一、单选题,对于数据,下列计算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列几何体是棱锥的是( )
    A. B. C. D.
    2.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )
    A. B. C. D.
    3.如图,在△ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为(  )

    A.2 B.3 C.4 D.6
    4.一、单选题
    如图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的(  )

    A.点A B.点B C.点C D.点D
    5.对于数据:6,3,4,7,6,0,1.下列判断中正确的是( )
    A.这组数据的平均数是6,中位数是6 B.这组数据的平均数是6,中位数是7
    C.这组数据的平均数是5,中位数是6 D.这组数据的平均数是5,中位数是7
    6.如图已知⊙O的内接五边形ABCDE,连接BE、CE,若AB=BC=CE,∠EDC=130°,则∠ABE的度数为(  )

    A.25° B.30° C.35° D.40°
    7.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是(  )

    A.球不会过网 B.球会过球网但不会出界
    C.球会过球网并会出界 D.无法确定
    8.下列计算正确的是( )
    A.a²+a²=a4 B.(-a2)3=a6
    C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b
    9.已知实数a<0,则下列事件中是必然事件的是(  )
    A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>0
    10.下列安全标志图中,是中心对称图形的是( )
    A. B. C. D.
    11.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是(  )
    A.无实数根
    B.有两个正根
    C.有两个根,且都大于﹣3m
    D.有两个根,其中一根大于﹣m
    12.函数y=中,自变量x的取值范围是(  )
    A.x>3 B.x<3 C.x=3 D.x≠3
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在△ABC中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形的面积之和(即阴影部分)为 cm2(结果保留π).

    14.如图,在等腰直角三角形ABC中,∠C=90°,点D为AB的中点,已知扇形EAD和扇形FBD的圆心分别为点A、点B,且AB=4,则图中阴影部分的面积为_____(结果保留π).

    15.一个多项式与的积为,那么这个多项式为 .
    16.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣1.例如,1※5=1×5﹣1+5﹣1=ll.请根据上述的定义解决问题:若不等式3※x<1,则不等式的正整数解是_____.
    17.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为____________海里/时.
    18.将三角形纸片()按如图所示的方式折叠,使点落在边上,记为点,折痕为,已知,,若以点,,为顶点的三角形与相似,则的长度是______.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.
    (1)请直接写出⊙M的直径,并求证BD平分∠ABO;
    (2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.

    20.(6分)如图,在▱ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O分别交BC,BD于点E,Q,连接EP并延长交AD于点F.
    (1)求证:EF是⊙O的切线;
    (2)求证:=4BP•QP.

    21.(6分)如图,在△ABC中,AB>AC,点D在边AC上.
    (1)作∠ADE,使∠ADE=∠ACB,DE交AB于点E;(尺规作图,保留作图痕迹,不写作法)
    (2)若BC=5,点D是AC的中点,求DE的长.

    22.(8分)已知开口向下的抛物线y=ax2-2ax+2与y轴的交点为A,顶点为B,对称轴与x轴的交点为C,点A与点D关于对称轴对称,直线BD与x轴交于点M,直线AB与直线OD交于点N.
    (1)求点D的坐标.
    (2)求点M的坐标(用含a的代数式表示).
    (3)当点N在第一象限,且∠OMB=∠ONA时,求a的值.

    23.(8分)如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.

    24.(10分)如图,一次函数(为常数,且)的图像与反比例函数的图像交于,两点.求一次函数的表达式;若将直线向下平移个单位长度后与反比例函数的图像有且只有一个公共点,求的值.

    25.(10分)某市旅游部门统计了今年“五•一”放假期间该市A、B、C、D四个旅游景区的旅游人数,并绘制出如图所示的条形统计图和扇形统计图,根据图中的信息解答下列问题:

    (1)求今年“五•一”放假期间该市这四个景点共接待游客的总人数;
    (2)扇形统计图中景点A所对应的圆心角的度数是多少,请直接补全条形统计图;
    (3)根据预测,明年“五•一”放假期间将有90万游客选择到该市的这四个景点旅游,请你估计有多少人会选择去景点D旅游?
    26.(12分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.
    (1)求证:四边形OBCP是平行四边形;
    (2)填空:
    ①当∠BOP=   时,四边形AOCP是菱形;
    ②连接BP,当∠ABP=   时,PC是⊙O的切线.

    27.(12分)在星期一的第八节课,我校体育老师随机抽取了九年级的总分学生进行体育中考的模拟测试,并对成绩进行统计分析,绘制了频数分布表和统计图,按得分划分成A、B、C、D、E、F六个等级,并绘制成如下两幅不完整的统计图表.

     等级
     得分x(分)
     频数(人)
     A
     95<x≤100
     4
     B
     90<x≤95
     m
     C
     85<x≤90
     n
     D
     80<x≤85
     24
     E
     75<x≤80
     8
     F
     70<x≤75
     4
    请你根据图表中的信息完成下列问题:
    (1)本次抽样调查的样本容量是   .其中m=   ,n=  .
    (2)扇形统计图中,求E等级对应扇形的圆心角α的度数;
    (3)我校九年级共有700名学生,估计体育测试成绩在A、B两个等级的人数共有多少人?
    (4)我校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校代表参加全市体能竞赛,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    分析:根据棱锥的概念判断即可.
    A是三棱柱,错误;
    B是圆柱,错误;
    C是圆锥,错误;
    D是四棱锥,正确.
    故选D.
    点睛:本题考查了立体图形的识别,关键是根据棱锥的概念判断.
    2、B
    【解析】
    首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.
    【详解】
    画树状图如下:

    由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,
    所以佳佳和琪琪恰好从同一个入口进入该公园的概率为,
    故选B.
    【点睛】
    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
    3、B
    【解析】
    根据三角形的中位线等于第三边的一半进行计算即可.
    【详解】
    ∵D、E分别是△ABC边AB、AC的中点,
    ∴DE是△ABC的中位线,
    ∵BC=6,
    ∴DE=BC=1.
    故选B.
    【点睛】
    本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.
    4、D
    【解析】
    根据全等三角形的性质和已知图形得出即可.
    【详解】
    解:∵△MNP≌△MEQ,
    ∴点Q应是图中的D点,如图,

    故选:D.
    【点睛】
    本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等.
    5、C
    【解析】
    根据题目中的数据可以按照从小到大的顺序排列,从而可以求得这组数据的平均数和中位数.
    【详解】
    对于数据:6,3,4,7,6,0,1,
    这组数据按照从小到大排列是:0,3,4,6,6,7,1,
    这组数据的平均数是: 中位数是6,
    故选C.
    【点睛】
    本题考查了平均数、中位数的求法,解决本题的关键是明确它们的意义才会计算,求平均数是用一组数据的和除以这组数据的个数;中位数的求法分两种情况:把一组数据从小到大排成一列, 正中间如果是一个数,这个数就是中位数,如果正中间是两个数,那中位数是这两个数的平均数.
    6、B
    【解析】
    如图,连接OA,OB,OC,OE.想办法求出∠AOE即可解决问题.
    【详解】
    如图,连接OA,OB,OC,OE.

    ∵∠EBC+∠EDC=180°,∠EDC=130°,
    ∴∠EBC=50°,
    ∴∠EOC=2∠EBC=100°,
    ∵AB=BC=CE,
    ∴弧AB=弧BC=弧CE,
    ∴∠AOB=∠BOC=∠EOC=100°,
    ∴∠AOE=360°﹣3×100°=60°,
    ∴∠ABE=∠AOE=30°.
    故选:B.
    【点睛】
    本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    7、C
    【解析】
    分析:(1)将点A(0,2)代入求出a的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.
    详解:根据题意,将点A(0,2)代入
    得:36a+2.6=2,
    解得:
    ∴y与x的关系式为
    当x=9时,
    ∴球能过球网,
    当x=18时,
    ∴球会出界.
    故选C.
    点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.
    8、D
    【解析】
    各项计算得到结果,即可作出判断.
    【详解】
    A、原式=2a2,不符合题意;
    B、原式=-a6,不符合题意;
    C、原式=a2+2ab+b2,不符合题意;
    D、原式=-4b,符合题意,
    故选:D.
    【点睛】
    此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
    9、B
    【解析】
    A、a+3<0是随机事件,故A错误;B、a﹣3<0是必然事件,故B正确;
    C、3a>0是不可能事件,故C错误;D、a3>0是随机事件,故D错误;
    故选B.
    点睛:本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件指一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
    10、B
    【解析】
    试题分析:A.不是中心对称图形,故此选项不合题意;
    B.是中心对称图形,故此选项符合题意;
    C.不是中心对称图形,故此选项不符合题意;
    D.不是中心对称图形,故此选项不合题意;
    故选B.
    考点:中心对称图形.
    11、A
    【解析】
    先整理为一般形式,用含m的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可.
    【详解】
    方程整理为,
    △,
    ∵,
    ∴,
    ∴△,
    ∴方程没有实数根,
    故选A.
    【点睛】
    本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
    12、D
    【解析】
    由题意得,x﹣1≠0,
    解得x≠1.
    故选D.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、.
    【解析】
    图中阴影部分的面积就是两个扇形的面积,圆A,B的半径为2cm,则根据扇形面积公式可得阴影面积.
    【详解】
    (cm2).
    故答案为.
    考点:1、扇形的面积公式;2、两圆相外切的性质.
    14、4﹣π
    【解析】
    由在等腰直角三角形ABC中,∠C=90°,AB=4,可求得直角边AC与BC的长,继而求得△ABC的面积,又由扇形的面积公式求得扇形EAD和扇形FBD的面积,继而求得答案.
    【详解】
    解:∵在等腰直角三角形ABC中,∠C=90°,AB=4,
    ∴AC=BC=AB•sin45°=AB=2,
    ∴S△ABC=AC•BC=4,
    ∵点D为AB的中点,
    ∴AD=BD=AB=2,
    ∴S扇形EAD=S扇形FBD=×π×22=π,
    ∴S阴影=S△ABC﹣S扇形EAD﹣S扇形FBD=4﹣π.
    故答案为:4﹣π.
    【点睛】
    此题考查了等腰直角三角形的性质以及扇形的面积.注意S阴影=S△ABC﹣S扇形EAD﹣S扇形FBD.
    15、
    【解析】
    试题分析:依题意知
    =
    考点:整式运算
    点评:本题难度较低,主要考查学生对整式运算中多项式计算知识点的掌握。同底数幂相乘除,指数相加减。
    16、2
    【解析】
    【分析】根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论.
    【详解】∵3※x=3x﹣3+x﹣2<2,
    ∴x<,
    ∵x为正整数,
    ∴x=2,
    故答案为:2.
    【点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.
    17、
    【解析】
    设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.
    【详解】
    如图所示:

    该船行驶的速度为x海里/时,
    3小时后到达小岛的北偏西45°的C处,
    由题意得:AB=80海里,BC=3x海里,
    在直角三角形ABQ中,∠BAQ=60°,
    ∴∠B=90°−60°=30°,
    ∴AQ=AB=40,BQ=AQ=40,
    在直角三角形AQC中,∠CAQ=45°,
    ∴CQ=AQ=40,
    ∴BC=40+40=3x,
    解得:x=.
    即该船行驶的速度为海里/时;
    故答案为:.
    【点睛】
    本题考查的是解直角三角形,熟练掌握方向角是解题的关键.
    18、或2
    【解析】
    由折叠性质可知B’F=BF,△B’FC与△ABC相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x,列出比例式方程解方程即可得到结果.
    【详解】
    由折叠性质可知B’F=BF,设B’F=BF=x,故CF=4-x
    当△B’FC∽△ABC,有,得到方程,解得x=,故BF=;
    当△FB’C∽△ABC,有,得到方程,解得x=2,故BF=2;
    综上BF的长度可以为或2.
    【点睛】
    本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)详见解析;(2)(,1).
    【解析】
    (1)根据勾股定理可得AB的长,即⊙M的直径,根据同弧所对的圆周角可得BD平分∠ABO;
    (2)作辅助构建切线AE,根据特殊的三角函数值可得∠OAB=30°,分别计算EF和AF的长,可得点E的坐标.
    【详解】
    (1)∵点A(,0)与点B(0,﹣1),
    ∴OA=,OB=1,
    ∴AB==2,
    ∵AB是⊙M的直径,
    ∴⊙M的直径为2,
    ∵∠COD=∠CBO,∠COD=∠CBA,
    ∴∠CBO=∠CBA,
    即BD平分∠ABO;
    (2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,
    ∵在Rt△ACB中,tan∠OAB=,
    ∴∠OAB=30°,
    ∵∠ABO=90°,
    ∴∠OBA=60°,
    ∴∠ABC=∠OBC==30°,
    ∴OC=OB•tan30°=1×,
    ∴AC=OA﹣OC=,
    ∴∠ACE=∠ABC+∠OAB=60°,
    ∴∠EAC=60°,
    ∴△ACE是等边三角形,
    ∴AE=AC=,
    ∴AF=AE=,EF==1,
    ∴OF=OA﹣AF=,
    ∴点E的坐标为(,1).

    【点睛】
    此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.
    20、(1)证明见解析;(2)证明见解析.
    【解析】
    试题分析:(1)连接OE,AE,由AB是⊙O的直径,得到∠AEB=∠AEC=90°,根据四边形ABCD是平行四边形,得到PA=PC推出∠OEP=∠OAC=90°,根据切线的判定定理即可得到结论;
    (2)由AB是⊙O的直径,得到∠AQB=90°根据相似三角形的性质得到=PB•PQ,根据全等三角形的性质得到PF=PE,求得PA=PE=EF,等量代换即可得到结论.
    试题解析:(1)连接OE,AE,∵AB是⊙O的直径,∴∠AEB=∠AEC=90°,∵四边形ABCD是平行四边形,∴PA=PC,∴PA=PC=PE,∴∠PAE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切线;
    (2)∵AB是⊙O的直径,∴∠AQB=90°,∴△APQ∽△BPA,∴,∴=PB•PQ,在△AFP与△CEP中,∵∠PAF=∠PCE,∠APF=∠CPE,PA=PC,∴△AFP≌△CEP,∴PF=PE,∴PA=PE=EF,∴=4BP•QP.

    考点:切线的判定;平行四边形的性质;相似三角形的判定与性质.
    21、(1)作图见解析;(2)
    【解析】
    (1)根据作一个角等于已知角的步骤解答即可;
    (2)由作法可得DE∥BC,又因为D是AC的中点,可证DE为△ABC的中位线,从而运用三角形中位线的性质求解.
    【详解】
    解:(1)如图,∠ADE为所作;

    (2)∵∠ADE=∠ACB,
    ∴DE∥BC,
    ∵点D是AC的中点,
    ∴DE为△ABC的中位线,
    ∴DE=BC=.
    22、(1)D(2,2);(2);(3)
    【解析】
    (1)令x=0求出A的坐标,根据顶点坐标公式或配方法求出顶点B的坐标、对称轴直线,根据点A与点D关于对称轴对称,确定D点坐标.
    (2)根据点B、D的坐标用待定系数法求出直线BD的解析式,令y=0,即可求得M点的坐标.
    (3)根据点A、B的坐标用待定系数法求出直线AB的解析式,求直线OD的解析式,进而求出交点N的坐标,得到ON的长.过A点作AE⊥OD,可证△AOE为等腰直角三角形,根据OA=2,可求得AE、OE的长,表示出EN的长.根据tan∠OMB=tan∠ONA,得到比例式,代入数值即可求得a的值.
    【详解】
    (1)当x=0时,,
    ∴A点的坐标为(0,2)

    ∴顶点B的坐标为:(1,2-a),对称轴为x= 1,
    ∵点A与点D关于对称轴对称
    ∴D点的坐标为:(2,2)
    (2)设直线BD的解析式为:y=kx+b
    把B(1,2-a)D(2,2)代入得:
    ,解得:
    ∴直线BD的解析式为:y=ax+2-2a
    当y=0时,ax+2-2a=0,解得:x=
    ∴M点的坐标为:
    (3)由D(2,2)可得:直线OD解析式为:y=x
    设直线AB的解析式为y=mx+n,代入A(0,2)B(1,2-a)可得:
    解得:
    ∴直线AB的解析式为y= -ax+2
    联立成方程组: ,解得:
    ∴N点的坐标为:()
    ON=()
    过A点作AE⊥OD于E点,则△AOE为等腰直角三角形.
    ∵OA=2
    ∴OE=AE=,EN=ON-OE=()-=)
    ∵M,C(1,0), B(1,2-a)
    ∴MC=,BE=2-a
    ∵∠OMB=∠ONA
    ∴tan∠OMB=tan∠ONA
    ∴,即
    解得:a=或
    ∵抛物线开口向下,故a

    相关试卷

    浙江省吴兴区七校联考2021-2022学年中考猜题数学试卷含解析:

    这是一份浙江省吴兴区七校联考2021-2022学年中考猜题数学试卷含解析,共20页。试卷主要包含了如图,一、单选题等内容,欢迎下载使用。

    浙江省台州市天台、椒江、玉环三区2021-2022学年中考猜题数学试卷含解析:

    这是一份浙江省台州市天台、椒江、玉环三区2021-2022学年中考猜题数学试卷含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,如果将直线l1,在数轴上表示不等式2等内容,欢迎下载使用。

    浙江省江北区市级名校2021-2022学年中考猜题数学试卷含解析:

    这是一份浙江省江北区市级名校2021-2022学年中考猜题数学试卷含解析,共19页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map