

2022北京朝阳高三二模数学练习题
展开
这是一份2022北京朝阳高三二模数学练习题,共5页。试卷主要包含了6%72,25等内容,欢迎下载使用。
2022.5
(考试时间120分钟满分150分)
本试卷分为选择题40分和非选择题110分
第一部分(选择题共40分)
一、选择题:本大题共10小题,每小题4分,共40分。在每小题给出的四个选项中,选出符合题目要求的一项
(1)设集合,则
(A)(B)(C)(D)
(2)在复平面内,复数对应的点位于
(A)第一象限(B)第二象限(C)第三象限(D)第四象限
(3)已知双曲线的一条渐近线方程为,则的离心率为
(A)(B)(C)2(D)
(4)已知角的终边经过点,则
(A)(B)(C)(D)
(5)过点(1,2)作圆的切线,则切线方程为
(A)(B)
(C)(D)或
(6)“”是“”的
(A)充分而不必要条件(B)必要而不充分条件
(C)充分必要条件(D)既不充分也不必要条件
(7)已知,是两条不同的直线,,是两个不同的平面,下面正确的结论是
(A)若,,则(B)若,,则
(C)若,上,则(D)若,,,则
(8)IS0216是国际标准化组织所定义的纸张尺寸国际标准,该标准定义了A,B系列的纸张尺寸。设型号为A0,A1,A2,A3,A4,A5,A6的纸张的面积分别是,它们组成一个公比为的等比数列,设型号为B1,B2,B3,B4,B5,B6的纸张的面积分别是,已知,则的值为
(A)(B)(C)(D)2
(9)已知为所在平面内的一点,,且,则
(A)0(B)1(C)(D)3
(10)某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量(单位:mg/L)与时间(单位:h)间的关系为,其中,是正的常数。如果在前10h污染物减少19%,那么再过5h后污染物还剩余
(A)40.5%(B)54%(C)65.6%(D)72.9%
二、填空题:本大题共5小题,每小题5分,共25分。把答案填在答题卡上
(11)抛物线的准线方程是__________.
(12)在的展开式中,的系数是__________.(用数字作答)
(13)已知的三个角的对边分别为,则能使成立的一组的值是__________.
(14)“杨辉三角”是数学史上的一个伟大成就。在如图所示的“杨辉三角”中,去掉所有的数字1,余下的数逐行从左到右排列,得到数列为2,3,3,4,6,4,5,10,…,则数列的前10项和为__________;若,,则的最大值为__________.
(15)如图,在正方体中,分别为棱上的点(与正方体顶点不重合),过作平面,垂足为.设正方体的棱长为1,给出以下四个结论:
①若分别是的中点,则
②若分别是的中点,则用平行于平面的平面去截正方体,得到的截面图形一定是等边三角形;
③可能为直角三角形;
④.
其中所有正确结论的序号是___________.
三、解答题:本大题共6小题,共85分。解答应写出文字说明,演算步骤或证明过程.
(16)(本小题13分)
已知函数。再从条件①、条件②、条件③这三个条件中选择能确定函数的解析式的两个作为已知。
(I)求的解析式及最小值;
(Ⅱ)若函数在区间上有且仅有1个零点,求的取值范围。
条件①:函数的最小正周期为;
条件2:函数的图象经过点;
条件③:函数的最大值为.
注:如果选择的条件不符合要求,得0分;如果选择多组符合要求的条件分别解答,按第一组解答计分.
(17)(本小题14分)
如图,在长方体中,底面是边长为2的正方形,分别是,的中点,
(I)求证:平面;
(Ⅱ)设在棱上,且,为的中点,求证:
平面;并求直线与平面,所成角的正弦值.
(18)(本小题13分)
为实现乡村的全面振兴,某地区依托乡村特色优势资源,鼓励当地农民种植中药材,批发销售。根据前期分析多年数据发现,某品种中药材在该地区各年的平均每亩种植成本为5000元,此品种中药材在该地区各年的平均每亩产量与此品种中药材的国内市场批发价格均具有随机性,且互不影响,其具体情况如下表:
该地区此品种中药材各年的平均每亩产量情况
(注:各年的平均每亩纯收入=各年的平均每亩产量×批发价格-各年的平均每亩种植成本)
(I)以频率估计概率,试估计该地区某农民2022年种植此品种中药材获得最高纯收入的概率;
(Ⅱ)设该地区某农民2022年种植此品种中药材的平均每亩纯收入为元,以频率估计概率,求的分布列和数学期望;
(Ⅲ)已知该地区某农民有一块土地共10亩,该块土地现种植其他农作物,年纯收入最高可达到45000元,根据以上数据,该农民下一年是否应该选择在这块土地种植此品种中药材?说明理由。
(19)(本小题15分)
已知椭圆的一个顶点为,离心率为.
(I)求椭圆的方程;
(Ⅱ)过点作斜率为的直线交椭圆于另一点,过点作斜率为的直线交椭圆于另一点.若,求证:直线经过定点.
(20)(本小题15分)
已知函数.
(I)当时,求函数的单调区间;
(Ⅱ)设函数若对任意,存在,使得
成立,求实数的取值范围。
(21)(本小题15分)
已知集合.对集合中的任意元素,定义,当正整数时,定义.
(I)若,求和;
(Ⅱ)若满足且,求的所有可能结果;
(Ⅲ)是否存在正整数使得对任意都有?若存在,求出的所有取值;若不存在,说明理由.各年的平均每亩产量
400kg
500kg
频率
0.25
0.75
相关试卷
这是一份2023年北京朝阳区高三二模数学拓展试题,共15页。
这是一份2023年北京朝阳区高三二模数学试题及答案,共11页。
这是一份2023年北京朝阳区高三二模数学试题及答案解析,共11页。
