终身会员
搜索
    上传资料 赚现金

    四川省资阳市乐至县2022年中考三模数学试题含解析

    立即下载
    加入资料篮
    四川省资阳市乐至县2022年中考三模数学试题含解析第1页
    四川省资阳市乐至县2022年中考三模数学试题含解析第2页
    四川省资阳市乐至县2022年中考三模数学试题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省资阳市乐至县2022年中考三模数学试题含解析

    展开

    这是一份四川省资阳市乐至县2022年中考三模数学试题含解析,共21页。试卷主要包含了下列各式,计算的结果是,计算等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列几何体中,主视图和俯视图都为矩形的是(   )
    A. B. C. D.
    2.若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( )
    A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5
    3.若,则的值为( )
    A.﹣6 B.6 C.18 D.30
    4.下列各式:①a0=1 ②a2·a3=a5 ③ 2–2= –④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是 ( )
    A.①②③ B.①③⑤ C.②③④ D.②④⑤
    5. “a是实数,|a|≥0”这一事件是( )
    A.必然事件 B.不确定事件 C.不可能事件 D.随机事件
    6.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为(  )

    A. B. C. D.
    7.计算的结果是( )
    A. B. C.1 D.2
    8.如图,已知∠1=∠2,要使△ABD≌△ACD,需从下列条件中增加一个,错误的选法是( )

    A.∠ADB=∠ADC B.∠B=∠C C.AB=AC D.DB=DC
    9.已知一个多边形的内角和是外角和的2倍,则此多边形的边数为 ( )
    A.6 B.7 C.8 D.9
    10.计算(﹣)﹣1的结果是(  )
    A.﹣ B. C.2 D.﹣2
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC、BD,若S四边形ABCD=18,则BD的最小值为_________.

    12.解不等式组
    请结合题意填空,完成本题的解答.
    (Ⅰ)解不等式①,得   ;
    (Ⅱ)解不等式②,得   ;
    (Ⅲ)把不等式①和②的解集在数轴上表示出来:
    (Ⅳ)原不等式组的解集为   .

    13.计算2x3·x2的结果是_______.
    14.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,若静水时船速为26km/h,水速为2km/h,则A港和B港相距_____km.
    15.如图,A、B、C是⊙O上的三点,若∠C=30°,OA=3,则弧AB的长为______.(结果保留π)

    16.在Rt△ABC纸片上剪出7个如图所示的正方形,点E,F落在AB边上,每个正方形的边长为1,则Rt△ABC的面积为_____.

    17.若一段弧的半径为24,所对圆心角为60°,则这段弧长为____.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,AB为⊙O的直径,点E在⊙O上,C为的中点,过点C作直线CD⊥AE于D,连接AC、BC.
    (1)试判断直线CD与⊙O的位置关系,并说明理由;
    (2)若AD=2,AC=,求AB的长.

    19.(5分)已知:如图,AB为⊙O的直径,C是BA延长线上一点,CP切⊙O于P,弦PD⊥AB于E,过点B作BQ⊥CP于Q,交⊙O于H,
    (1)如图1,求证:PQ=PE;
    (2)如图2,G是圆上一点,∠GAB=30°,连接AG交PD于F,连接BF,若tan∠BFE=3,求∠C的度数;
    (3)如图3,在(2)的条件下,PD=6,连接QC交BC于点M,求QM的长.

    20.(8分)先化简,再求值:()÷,其中a=+1.
    21.(10分)已知:如图,一次函数与反比例函数的图象有两个交点和,过点作轴,垂足为点;过点作轴,垂足为点,且,连接.
    求,,的值;求四边形的面积.
    22.(10分)已知二次函数.
    (1)该二次函数图象的对称轴是;
    (2)若该二次函数的图象开口向上,当时,函数图象的最高点为,最低点为,点的纵坐标为,求点和点的坐标;
    (3)对于该二次函数图象上的两点,,设,当时,均有,请结合图象,直接写出的取值范围.
    23.(12分)计算:-2-2 - + 0
    24.(14分)在平面直角坐标系中,某个函数图象上任意两点的坐标分别为(﹣t,y1)和(t,y2)(其中t为常数且t>0),将x<﹣t的部分沿直线y=y1翻折,翻折后的图象记为G1;将x>t的部分沿直线y=y2翻折,翻折后的图象记为G2,将G1和G2及原函数图象剩余的部分组成新的图象G.
    例如:如图,当t=1时,原函数y=x,图象G所对应的函数关系式为y=.

    (1)当t=时,原函数为y=x+1,图象G与坐标轴的交点坐标是  .
    (2)当t=时,原函数为y=x2﹣2x
    ①图象G所对应的函数值y随x的增大而减小时,x的取值范围是  .
    ②图象G所对应的函数是否有最大值,如果有,请求出最大值;如果没有,请说明理由.
    (3)对应函数y=x2﹣2nx+n2﹣3(n为常数).
    ①n=﹣1时,若图象G与直线y=2恰好有两个交点,求t的取值范围.
    ②当t=2时,若图象G在n2﹣2≤x≤n2﹣1上的函数值y随x的增大而减小,直接写出n的取值范围.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    A、主视图为等腰三角形,俯视图为圆以及圆心,故A选项错误;
    B、主视图为矩形,俯视图为矩形,故B选项正确;
    C、主视图,俯视图均为圆,故C选项错误;
    D、主视图为矩形,俯视图为三角形,故D选项错误.
    故选:B.
    2、B
    【解析】
    试题解析:∵关于x的一元二次方程方程有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.
    3、B
    【解析】
    试题分析:∵,即,∴原式==
    ===﹣12+18=1.故选B.
    考点:整式的混合运算—化简求值;整体思想;条件求值.
    4、D
    【解析】
    根据实数的运算法则即可一一判断求解.
    【详解】
    ①有理数的0次幂,当a=0时,a0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2= ,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确.
    故选D.
    5、A
    【解析】
    根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,由a是实数,得|a|≥0恒成立,因此,这一事件是必然事件.故选A.
    6、C
    【解析】
    连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.
    【详解】
    解:连接OD,
    在Rt△OCD中,OC=OD=2,
    ∴∠ODC=30°,CD=
    ∴∠COD=60°,
    ∴阴影部分的面积= ,
    故选:C.

    【点睛】
    本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.
    7、A
    【解析】
    根据两数相乘,同号得正,异号得负,再把绝对值相乘计算即可.
    【详解】
    .
    故选A.
    【点睛】
    本题考查了有理数的乘法计算,解答本题的关键是熟练掌握有理数的乘法法则.
    8、D
    【解析】
    由全等三角形的判定方法ASA证出△ABD≌△ACD,得出A正确;由全等三角形的判定方法AAS证出△ABD≌△ACD,得出B正确;由全等三角形的判定方法SAS证出△ABD≌△ACD,得出C正确.由全等三角形的判定方法得出D不正确;
    【详解】
    A正确;理由:
    在△ABD和△ACD中,
    ∵∠1=∠2,AD=AD,∠ADB=∠ADC,
    ∴△ABD≌△ACD(ASA);
    B正确;理由:
    在△ABD和△ACD中,
    ∵∠1=∠2,∠B=∠C,AD=AD
    ∴△ABD≌△ACD(AAS);
    C正确;理由:
    在△ABD和△ACD中,
    ∵AB=AC,∠1=∠2,AD=AD,
    ∴△ABD≌△ACD(SAS);
    D不正确,由这些条件不能判定三角形全等;
    故选:D.
    【点睛】
    本题考查了全等三角形的判定方法;三角形全等的判定是中考的热点,熟练掌握全等三角形的判定方法是解决问题的关键.
    9、A
    【解析】
    试题分析:根据多边形的外角和是310°,即可求得多边形的内角的度数为720°,依据多边形的内角和公式列方程即可得(n﹣2)180°=720°,解得:n=1.
    故选A.
    考点:多边形的内角和定理以及多边形的外角和定理
    10、D
    【解析】
    根据负整数指数幂与正整数指数幂互为倒数,可得答案.
    【详解】
    解: ,
    故选D.
    【点睛】
    本题考查了负整数指数幂,负整数指数幂与正整数指数幂互为倒数.

    二、填空题(共7小题,每小题3分,满分21分)
    11、6
    【解析】
    过A作AM⊥CD于M,过A作AN⊥BC于N,先根据“AAS”证明△DAM≌△BAN,再证明四边形AMCN为正方形,可求得AC=6,从而当BD⊥AC时BD最小,且最小值为6.
    【详解】
    如下图,过A作AM⊥CD于M,过A作AN⊥BC于N,则∠MAN=90°,
    ∠DAM+∠BAM=90°,∠BAM+∠BAN=90°,
    ∴∠DAM=∠BAN.
    ∵∠DMA=∠N=90°,AB=AD,
    ∴△DAM≌△BAN,
    ∴AM=AN,
    ∴四边形AMCN为正方形,
    ∴S四边形ABCD=S四边形AMCN=AC2,
    ∴AC=6,
    ∴BD⊥AC时BD最小,且最小值为6.
    故答案为:6.

    【点睛】
    本题考查了全等三角形的判定与性质,正方形的判定与性质,正确作出辅助线是解答本题的关键.
    12、详见解析.
    【解析】
    先根据不等式的性质求出每个不等式的解集,再在数轴上表示出来,根据数轴找出不等式组公共部分即可.
    【详解】
    (Ⅰ)解不等式①,得:x<1;
    (Ⅱ)解不等式②,得:x≥﹣1;
    (Ⅲ)把不等式①和②的解集在数轴上表示出来:

    (Ⅳ)原不等式组的解集为:﹣1≤x<1,
    故答案为:x<1、x≥﹣1、﹣1≤x<1.
    【点睛】
    本题考查了解一元一次不等式组的概念.
    13、
    【解析】试题分析:根据单项式乘以单项式,结合同底数幂相乘,底数不变,指数相加,可知2x3·x2=2x3+2=2x5.
    故答案为:2x5
    14、1.
    【解析】
    根据逆流速度=静水速度-水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解问题可解.
    【详解】
    解:设A港与B港相距xkm,
    根据题意得:

    解得:x=1,
    则A港与B港相距1km.
    故答案为:1.
    【点睛】
    此题考查了分式方程的应用题,解答关键是在顺流、逆流过程中找出等量关系构造方程.
    15、π
    【解析】
    ∵∠C=30°,
    ∴∠AOB=60°,
    ∴.即的长为.
    16、
    【解析】
    如图,设AH=x,GB=y,利用平行线分线段成比例定理,构建方程组求出x,y即可解决问题.
    【详解】
    解:如图,设AH=x,GB=y,

    ∵EH∥BC,


    ∵FG∥AC,


    由①②可得x=,y=2,
    ∴AC=,BC=7,
    ∴S△ABC=,
    故答案为.
    【点睛】
    本题考查图形的相似,平行线分线段成比例定理,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.
    17、8π
    【解析】
    试题分析:∵弧的半径为24,所对圆心角为60°,
    ∴弧长为l==8π.
    故答案为8π.
    【考点】弧长的计算.

    三、解答题(共7小题,满分69分)
    18、(1)证明见解析(2)3
    【解析】
    (1)连接,由为的中点,得到,等量代换得到,根据平行线的性质得到,即可得到结论;
    (2)连接,由勾股定理得到,根据切割线定理得到,根据勾股定理得到,由圆周角定理得到,即可得到结论.
    【详解】
    相切,连接,
    ∵为的中点,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,

    ∴直线与相切;
    方法:连接,
    ∵,,
    ∵,
    ∴,
    ∵是的切线,
    ∴,
    ∴,
    ∴,
    ∵为的中点,
    ∴,
    ∵为的直径,
    ∴,
    ∴.
    方法:∵,
    易得,
    ∴,
    ∴.
    【点睛】
    本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,勾股定理,平行线的性质,切割线定理,熟练掌握各定理是解题的关键.
    19、(1)证明见解析(2)30°(3) QM=
    【解析】
    试题分析:
    (1)连接OP,PB,由已知易证∠OBP=∠OPB=∠QBP,从而可得BP平分∠OBQ,结合BQ⊥CP于点Q,PE⊥AB于点E即可由角平分线的性质得到PQ=PE;
    (2)如下图2,连接OP,则由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,设EF=x,则由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,从而可得AB=,则OP=OA=,结合AE=可得OE=,这样即可得到sin∠OPE=,由此可得∠OPE=30°,则∠C=30°;
    (3)如下图3,连接BG,过点O作OK⊥HB于点K,结合BQ⊥CP,∠OPQ=90°,可得四边形POKQ为矩形.由此可得QK=PO,OK∥CQ从而可得∠KOB=∠C=30°;由已知易证PE=,在Rt△EPO中结合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知条件可得BG=6,∠ABG=60°;过点G作GN⊥QB交QB的延长线于点N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,从而可得解得GN=,BN=3,由此可得QN=12,则在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分线,由此可得QM:GM=QB:GB=9:6由此即可求得QM的长了.
    试题解析:
    (1)如下图1,连接OP,PB,∵CP切⊙O于P,
    ∴OP⊥CP于点P,
    又∵BQ⊥CP于点Q,
    ∴OP∥BQ,
    ∴∠OPB=∠QBP,
    ∵OP=OB,
    ∴∠OPB=∠OBP,
    ∴∠QBP=∠OBP,
    又∵PE⊥AB于点E,
    ∴PQ=PE;

    (2)如下图2,连接,∵CP切⊙O于P,


    ∵PD⊥AB



    在Rt中,∠GAB=30°
    ∴设EF=x,则
    在Rt中,tan∠BFE=3




    ∴在RtPEO中,
    ∴30°;

    (3)如下图3,连接BG,过点O作于K,又BQ⊥CP,
    ∴,
    ∴四边形POKQ为矩形,
    ∴QK=PO,OK//CQ,
    ∴30°,
    ∵⊙O 中PD⊥AB于E ,PD=6 ,AB为⊙O的直径,
    ∴PE= PD= 3,
    根据(2)得,在RtEPO中,,
    ∴,
    ∴OB=QK=PO=6,
    ∴在Rt中, ,
    ∴,
    ∴QB=9,
    在△ABG中,AB为⊙O的直径,
    ∴AGB=90°,
    ∵BAG=30°,
    ∴BG=6,ABG=60°,
    过点G作GN⊥QB交QB的延长线于点N,则∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,
    ∴BN=BQ·cos∠GBQ=3,GN=BQ·sin∠GBQ=,
    ∴QN=QB+BN=12,
    ∴在Rt△QGN中,QG=,
    ∵∠ABG=∠CBQ=60°,
    ∴BM是△BQG的角平分线,
    ∴QM:GM=QB:GB=9:6,
    ∴QM=.

    点睛:解本题第3小题的要点是:(1)作出如图所示的辅助线,结合已知条件和(2)先求得BQ、BG的长及∠CBQ=∠ABG=60°;(2)再过点G作GN⊥QB并交QB的延长线于点N,解出BN和GN的长,这样即可在Rt△QGN中求得QG的长,最后在△BQG中“由角平分线分线段成比例定理”即可列出比例式求得QM的长了.
    20、,.
    【解析】
    根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.
    【详解】
    解: ()÷
    =
    =
    =
    =,
    当a=+1时,原式==.
    【点睛】
    本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
    21、(1),,.(2)6
    【解析】
    (1)用代入法可求解,用待定系数法求解;(2)延长,交于点,则.根据求解.
    【详解】
    解:(1)∵点在上,
    ∴,
    ∵点在上,且,
    ∴.
    ∵过,两点,
    ∴,
    解得,
    ∴,,.
    (2)如图,延长,交于点,则.
    ∵轴,轴,
    ∴,,
    ∴,,



    .
    ∴四边形的面积为6.

    【点睛】
    考核知识点:反比例函数和一次函数的综合运用.数形结合分析问题是关键.
    22、 (1)x=1;(2),;(3)
    【解析】
    (1)二次函数的对称轴为直线x=-,带入即可求出对称轴,
    (2)在区间内发现能够取到函数的最低点,即为顶点坐标,当开口向上是,距离对称轴越远,函数值越大,所以当x=5时,函数有最大值.
    (3)分类讨论,当二次函数开口向上时不满足条件,所以函数图像开口只能向下,且应该介于-1和3之间,才会使,解不等式组即可.
    【详解】
    (1)该二次函数图象的对称轴是直线;
    (2)∵该二次函数的图象开口向上,对称轴为直线,,
    ∴当时,的值最大,即.
    把代入,解得.
    ∴该二次函数的表达式为.
    当时,,
    ∴.
    (3)易知a0,
    ∵当时,均有,
    ∴,解得
    ∴的取值范围.
    【点睛】
    本题考查了二次函数的对称轴,定区间内求函数值域,以及二次函数图像的性质,难度较大,综合性强,熟悉二次函数的单调性是解题关键.
    23、
    【解析】
    直接利用负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值分别化简,再根据实数的运算法则即可求出答案.
    【详解】
    解:原式=
    【点睛】
    本题考查了负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值,熟记这些运算法则是解题的关键.
    24、(1)(2,0);(2)①﹣≤x≤1或x≥;②图象G所对应的函数有最大值为;(3)①;②n≤或n≥.
    【解析】
    (1)根据题意分别求出翻转之后部分的表达式及自变量的取值范围,将y=0代入,求出x值,即可求出图象G与坐标轴的交点坐标;
    (2)画出函数草图,求出翻转点和函数顶点的坐标,①根据图象的增减性可求出y随x的增大而减小时,x的取值范围,②根据图象很容易计算出函数最大值;
    (3)①将n=﹣1代入到函数中求出原函数的表达式,计算y=2时,x的值.据(2)中的图象,函数与y=2恰好有两个交点时t大于右边交点的横坐标且-t大于左边交点的横坐标,据此求解.
    ②画出函数草图,分别计算函数左边的翻转点A,右边的翻转点C,函数的顶点B的横坐标(可用含n的代数式表示),根据函数草图以及题意列出关于n的不等式求解即可.
    【详解】
    (1)当x=时,y=,
    当x≥时,翻折后函数的表达式为:y=﹣x+b,将点(,)坐标代入上式并解得:
    翻折后函数的表达式为:y=﹣x+2,
    当y=0时,x=2,即函数与x轴交点坐标为:(2,0);
    同理沿x=﹣翻折后当时函数的表达式为:y=﹣x,
    函数与x轴交点坐标为:(0,0),因为所以舍去.
    故答案为:(2,0);
    (2)当t=时,由函数为y=x2﹣2x构建的新函数G的图象,如下图所示:

    点A、B分别是t=﹣、t=的两个翻折点,点C是抛物线原顶点,
    则点A、B、C的横坐标分别为﹣、1、,
    ①函数值y随x的增大而减小时,﹣≤x≤1或x≥,
    故答案为:﹣≤x≤1或x≥;
    ②函数在点A处取得最大值,
    x=﹣,y=(﹣)2﹣2×(﹣)=,
    答:图象G所对应的函数有最大值为;
    (3)n=﹣1时,y=x2+2x﹣2,
    ①参考(2)中的图象知:
    当y=2时,y=x2+2x﹣2=2,
    解得:x=﹣1±,
    若图象G与直线y=2恰好有两个交点,则t>﹣1且-t>,
    所以;
    ②函数的对称轴为:x=n,
    令y=x2﹣2nx+n2﹣3=0,则x=n±,
    当t=2时,点A、B、C的横坐标分别为:﹣2,n,2,
    当x=n在y轴左侧时,(n≤0),
    此时原函数与x轴的交点坐标(n+,0)在x=2的左侧,如下图所示,

    则函数在AB段和点C右侧,
    故:﹣2≤x≤n,即:在﹣2≤n2﹣2≤x≤n2﹣1≤n,
    解得:n≤;
    当x=n在y轴右侧时,(n≥0),
    同理可得:n≥;
    综上:n≤或n≥.
    【点睛】
    在做本题时,可先根据题意分别画出函数的草图,根据草图进行分析更加直观.在做第(1)问时,需注意翻转后的函数是分段函数,所以对最终的解要进行分析,排除掉自变量之外的解;(2)根据草图很直观的便可求得;(3)①需注意图象G与直线y=2恰好有两个交点,多于2个交点的要排除;②根据草图和增减性,列出不等式,求解即可.

    相关试卷

    2023年四川省资阳市安岳县中考数学一模试卷(含解析):

    这是一份2023年四川省资阳市安岳县中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年四川省资阳市乐至县中考数学模拟试卷(含解析):

    这是一份2023年四川省资阳市乐至县中考数学模拟试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    四川省资阳市资阳市雁江区重点名校2021-2022学年中考数学四模试卷含解析:

    这是一份四川省资阳市资阳市雁江区重点名校2021-2022学年中考数学四模试卷含解析,共20页。试卷主要包含了计算3的结果是,不等式组 的整数解有等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map