山东省新泰市西部联盟2021-2022学年中考数学模拟精编试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.计算(﹣)﹣1的结果是( )
A.﹣ B. C.2 D.﹣2
2.桌面上有A、B两球,若要将B球射向桌面任意一边的黑点,则B球一次反弹后击中A球的概率是( )
A. B. C. D.
3.下列选项中,可以用来证明命题“若a2>b2,则a>b“是假命题的反例是( )
A.a=﹣2,b=1 B.a=3,b=﹣2 C.a=0,b=1 D.a=2,b=1
4.2017年,山西省经济发展由“疲”转“兴”,经济增长步入合理区间,各项社会事业发展取得显著成绩,全面建成小康社会迈出崭新步伐.2018年经济总体保持平稳,第一季度山西省地区生产总值约为3122亿元,比上年增长6.2%.数据3122亿元用科学记数法表示为( )
A.3122×10 8元 B.3.122×10 3元
C.3122×10 11 元 D.3.122×10 11 元
5.已知抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),其部分图象如图所示,下列结论:
①抛物线过原点;②a﹣b+c<1;③当x<1时,y随x增大而增大;
④抛物线的顶点坐标为(2,b);⑤若ax2+bx+c=b,则b2﹣4ac=1.
其中正确的是( )
A.①②③ B.①④⑤ C.①②④ D.③④⑤
6.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是( )
A. B. C.9 D.
7.已知x2+mx+25是完全平方式,则m的值为( )
A.10 B.±10 C.20 D.±20
8.下列运算正确的是( )
A.(a﹣3)2=a2﹣9 B.()﹣1=2 C.x+y=xy D.x6÷x2=x3
9.如图,已知反比函数的图象过Rt△ABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若△ABO的周长为,AD=2,则△ACO的面积为( )
A. B.1 C.2 D.4
10.将二次函数的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )
A. B.
C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.函数的定义域是________.
12.如图,CD是⊙O直径,AB是弦,若CD⊥AB,∠BCD=25°,则∠AOD=_____°.
13.计算(a3)2÷(a2)3的结果等于________
14.如图甲,对于平面上不大于90°的∠MON,我们给出如下定义:如果点P在∠MON的内部,作PE⊥OM,PF⊥ON,垂足分别为点E、F,那么称PE+PF的值为点P相对于∠MON的“点角距离”,记为d(P,∠MON).如图乙,在平面直角坐标系xOy中,点P在坐标平面内,且点P的横坐标比纵坐标大2,对于∠xOy,满足d(P,∠xOy)=10,点P的坐标是_____.
15.如图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于_______.
16.已知一个正六边形的边心距为,则它的半径为______ .
三、解答题(共8题,共72分)
17.(8分)如图,已知在△ABC中,AB=AC=5,cosB=,P是边AB上一点,以P为圆心,PB为半径的⊙P与边BC的另一个交点为D,联结PD、AD.
(1)求△ABC的面积;
(2)设PB=x,△APD的面积为y,求y关于x的函数关系式,并写出定义域;
(3)如果△APD是直角三角形,求PB的长.
18.(8分)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:这项被调查的总人数是多少人?试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.
19.(8分)计算:﹣4cos45°+()﹣1+|﹣2|.
20.(8分)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?
21.(8分)如图,M是平行四边形ABCD的对角线上的一点,射线AM与BC交于点F,与DC的延长线交于点H.
(1)求证:AM2=MF.MH
(2)若BC2=BD.DM,求证:∠AMB=∠ADC.
22.(10分)如图1,图2分别是某款篮球架的实物图与示意图,已知底座BC=1.5米,底座BC与支架AC所成的角∠ACB=60°,支架AF的长为2.50米,篮板顶端F点到篮筐D的距离FD=1.3米,篮板底部支架HE与支架AF所成的角∠FHE=45°,求篮筐D到地面的距离.(精确到0.01米参考数据:≈1.73,≈1.41)
23.(12分)雾霾天气严重影响市民的生活质量。在今年寒假期间,某校九年级一班的综合实践小组学生对“雾霾天气的主要成因”随机调查了所在城市部分市民,并对调查结果进行了整理,绘制了下图所示的不完整的统计图表:
组别 | 雾霾天气的主要成因 | 百分比 |
A | 工业污染 | 45% |
B | 汽车尾气排放 | |
C | 炉烟气排放 | 15% |
D | 其他(滥砍滥伐等) |
请根据统计图表回答下列问题:本次被调查的市民共有多少人?并求和的值;请补全条形统计图,并计算扇形统计图中扇形区域所对应的圆心角的度数;若该市有100万人口,请估计市民认为“工业污染和汽车尾气排放是雾霾天气主要成因”的人数.
24.水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
根据负整数指数幂与正整数指数幂互为倒数,可得答案.
【详解】
解: ,
故选D.
【点睛】
本题考查了负整数指数幂,负整数指数幂与正整数指数幂互为倒数.
2、B
【解析】
试题解析:由图可知可以瞄准的点有2个.
.
∴B球一次反弹后击中A球的概率是.
故选B.
3、A
【解析】
根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.由此即可解答.
【详解】
∵当a=﹣2,b=1时,(﹣2)2>12,但是﹣2<1,
∴a=﹣2,b=1是假命题的反例.
故选A.
【点睛】
本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法.
4、D
【解析】
可以用排除法求解.
【详解】
第一,根据科学记数法的形式可以排除A选项和C选项,B选项明显不对,所以选D.
【点睛】
牢记科学记数法的规则是解决这一类题的关键.
5、B
【解析】
由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结论①正确;当x=﹣1时,y>1,得到a﹣b+c>1,结论②错误;根据抛物线的对称性得到结论③错误;将x=2代入二次函数解析式中结合4a+b+c=1,即可求出抛物线的顶点坐标,结论④正确;根据抛物线的顶点坐标为(2,b),判断⑤.
【详解】
解:①∵抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),
∴抛物线与x轴的另一交点坐标为(1,1),
∴抛物线过原点,结论①正确;
②∵当x=﹣1时,y>1,
∴a﹣b+c>1,结论②错误;
③当x<1时,y随x增大而减小,③错误;
④抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,且抛物线过原点,
∴c=1,
∴b=﹣4a,c=1,
∴4a+b+c=1,
当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,
∴抛物线的顶点坐标为(2,b),结论④正确;
⑤∵抛物线的顶点坐标为(2,b),
∴ax2+bx+c=b时,b2﹣4ac=1,⑤正确;
综上所述,正确的结论有:①④⑤.
故选B.
【点睛】
本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
6、A
【解析】
解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==.故选A.
点睛:此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P点位置是解题的关键.
7、B
【解析】
根据完全平方式的特点求解:a2±2ab+b2.
【详解】
∵x2+mx+25是完全平方式,
∴m=±10,
故选B.
【点睛】
本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍.
8、B
【解析】
分析:根据完全平方公式、负整数指数幂,合并同类项以及同底数幂的除法的运算法则进行计算即可判断出结果.
详解:A. (a﹣3)2=a2﹣6a+9,故该选项错误;
B. ()﹣1=2,故该选项正确;
C.x与y不是同类项,不能合并,故该选项错误;
D. x6÷x2=x6-2=x4,故该选项错误.
故选B.
点睛:可不是主要考查了完全平方公式、负整数指数幂,合并同类项以及同度数幂的除法的运算,熟记它们的运算法则是解题的关键.
9、A
【解析】
在直角三角形AOB中,由斜边上的中线等于斜边的一半,求出OB的长,根据周长求出直角边之和,设其中一直角边AB=x,表示出OA,利用勾股定理求出AB与OA的长,过D作DE垂直于x轴,得到E为OA中点,求出OE的长,在直角三角形DOE中,利用勾股定理求出DE的长,利用反比例函数k的几何意义求出k的值,确定出三角形AOC面积即可.
【详解】
在Rt△AOB中,AD=2,AD为斜边OB的中线,
∴OB=2AD=4,
由周长为4+2
,得到AB+AO=2,
设AB=x,则AO=2-x,
根据勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,
整理得:x2-2x+4=0,
解得x1=+,x2=-,
∴AB=+,OA=-,
过D作DE⊥x轴,交x轴于点E,可得E为AO中点,
∴OE=OA=(-)(假设OA=+,与OA=-,求出结果相同),
在Rt△DEO中,利用勾股定理得:DE==(+)),
∴k=-DE•OE=-(+))×(-))=1.
∴S△AOC=DE•OE=,
故选A.
【点睛】
本题属于反比例函数综合题,涉及的知识有:勾股定理,直角三角形斜边的中线性质,三角形面积求法,以及反比例函数k的几何意义,熟练掌握反比例的图象与性质是解本题关键.
10、B
【解析】
抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果.
【详解】
解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),
可设新抛物线的解析式为:y=(x-h)1+k,
代入得:y=(x+1)1-1.
∴所得图象的解析式为:y=(x+1)1-1;
故选:B.
【点睛】
本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、x≥-1
【解析】
分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.
详解:根据题意得:x+1≥0,解得:x≥﹣1.
故答案为x≥﹣1.
点睛:考查了函数的定义域,函数的定义域一般从三个方面考虑:
(1)当函数表达式是整式时,定义域可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(1)当函数表达式是二次根式时,被开方数非负.
12、50
【解析】
由CD是⊙O的直径,弦AB⊥CD,根据垂径定理的即可求得
=,又由圆周角定理,可得∠AOD=50°.
【详解】
∵CD是⊙O的直径,弦AB⊥CD,
∴=,
∵∠BCD=25°=,
∴∠AOD=2∠BCD=50°,
故答案为50
【点睛】
本题考查角度的求解,解题的关键是利用垂径定理.
13、1
【解析】
根据幂的乘方, 底数不变, 指数相乘; 同底数幂的除法, 底数不变, 指数相减进行计算即可.
【详解】
解:原式=
【点睛】
本题主要考查幂的乘方和同底数幂的除法,熟记法则是解决本题的关键, 在计算中不要与其他法则相混淆. 幂的乘方, 底数不变,指数相乘; 同底数幂的除法, 底数不变, 指数相减.
14、(6,4)或(﹣4,﹣6)
【解析】
设点P的横坐标为x,表示出纵坐标,然后列方程求出x,再求解即可.
【详解】
解:设点P的横坐标为x,则点P的纵坐标为x-2,由题意得,
当点P在第一象限时,x+x-2=10,
解得x=6,
∴x-2=4,
∴P(6,4);
当点P在第三象限时,-x-x+2=10,
解得x=-4,
∴x-2=-6,
∴P(-4,-6).
故答案为:(6,4)或(-4,-6).
【点睛】
本题主要考查了点的坐标,读懂题目信息,理解“点角距离”的定义并列出方程是解题的关键.
15、
【解析】
分析:题图中阴影部分为弓形与三角形的和,因此求出扇形AOC的面积即可,所以关键是求圆心角的度数.本题考查组合图形的求法.扇形面积公式等.
详解:连结OC,∵△ABC为正三角形,∴∠AOC==120°,
∵ , ∴图中阴影部分的面积等于
∴S扇形AOC=即S阴影=cm2.故答案为.
点睛:本题考查了等边三角形性质,扇形的面积,三角形的面积等知识点的应用,关键是求出∠AOC的度数,主要考查学生综合运用定理进行推理和计算的能力.
16、2
【解析】
试题分析:设正六边形的中心是O,一边是AB,过O作OG⊥AB与G,在直角△OAG中,根据三角函数即可求得OA.
解:如图所示,
在Rt△AOG中,OG=,∠AOG=30°,
∴OA=OG÷cos 30°=÷=2;
故答案为2.
点睛:本题主要考查正多边形和圆的关系. 解题的关键在于利用正多边形的半径、边心距构造直角三角形并利用解直角三角形的知识求解.
三、解答题(共8题,共72分)
17、(1)12(2)y=(0<x<5)(3)或
【解析】
试题分析:(1)过点A作AH⊥BC于点H ,根据cosB=求得BH的长,从而根据已知可求得AH的长,BC的长,再利用三角形的面积公式即可得;
(2)先证明△BPD∽△BAC,得到=,再根据 ,代入相关的量即可得;
(3)分情况进行讨论即可得.
试题解析:(1)过点A作AH⊥BC于点H ,则∠AHB=90°,∴cosB= ,
∵cosB=,AB=5,∴BH=4,∴AH=3,
∵AB=AC,∴BC=2BH=8,
∴S△ABC=×8×3=12
(2)∵PB=PD,∴∠B=∠PDB,
∵AB=AC,∴∠B=∠C,∴∠C=∠PDB,
∴△BPD∽△BAC,
∴ ,
即,
解得=,
∴ ,
∴ ,
解得y=(0<x<5);
(3)∠APD<90°,
过C作CE⊥AB交BA延长线于E,可得cos∠CAE= ,
①当∠ADP=90°时,
cos∠APD=cos∠CAE=,
即 ,
解得x=;
②当∠PAD=90°时,
,
解得x=,
综上所述,PB=或.
【点睛】本题考查了相似三角形的判定与性质、底在同一直线上且高相等的三角形面积的关系等,结合图形及已知选择恰当的知识进行解答是关键.
18、(1)50;(2)108°;(3).
【解析】
分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案.
本题解析:解:(1)调查的总人数是:19÷38%=50(人).C组的人数有50-15-19-4=12(人),补全条形图如图所示.
(2)画树状图如下.共有12种等可能的结果,恰好选中甲的结果有6种,∴P(恰好选中甲)=.
点睛:本题考查了列表法与树状图、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.
19、4
【解析】
分析:
代入45°角的余弦函数值,结合“负整数指数幂的意义”和“二次根式的相关运算法则”进行计算即可.
详解:
原式=.
点睛:熟记“特殊角的三角函数值、负整数指数幂的意义:(为正整数)”是正确解答本题的关键.
20、30元
【解析】
试题分析:设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.
解:设第一批盒装花的进价是x元/盒,则
2×=,
解得 x=30
经检验,x=30是原方程的根.
答:第一批盒装花每盒的进价是30元.
考点:分式方程的应用.
21、(1)证明见解析;(2)证明见解析.
【解析】
(1)由于AD∥BC,AB∥CD,通过三角形相似,找到分别于,都相等的比,把比例式变形为等积式,问题得证.
(2)推出∽,再结合,可证得答案.
【详解】
(1)证明:∵四边形是平行四边形,
∴,,
∴, ,
∴即.
(2)∵四边形是平行四边形,
∴,又∵,
∴即,
又∵,
∴∽,
∴,
∵,
∴,
∵,
∴.
【点睛】
本题考查的知识点是相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.
22、3.05米
【解析】
延长FE交CB的延长线于M, 过A作AG⊥FM于G, 解直角三角形即可得到正确结论.
【详解】
解:
如图:延长FE交CB的延长线于M,过A作AG⊥FM于G,
在Rt△ABC中,tan∠ACB=,
∴AB=BC•tan60°=1.5×1.73=2.595,
∴GM=AB=2.595,
在Rt△AGF中,∵∠FAG=∠FHE=45°,sin∠FAG=,
∴sin45°=,
∴FG=1.76,
∴DM=FG+GM﹣DF≈3.05米.
答:篮框D到地面的距离是3.05米.
【点睛】
本题主要考查直角三角形和三角函数,构造合适的辅助线是本题解题的关键.
23、(1)200人,;(2)见解析,;(3)75万人.
【解析】
(1)用A类的人数除以所占的百分比求出被调查的市民数,再用B类的人数除以总人数得出B类所占的百分比m,继而求出n的值即可;
(2)求出C、D两组人数,从而可补全条形统计图,用360度乘以n即可得扇形区域所对应的圆心角的度数;
(3)用该市的总人数乘以持有A、B两类所占的百分比的和即可.
【详解】
(1)本次被调查的市民共有:(人),
∴,;
(2)组的人数是(人)、组的人数是(人),
∴;
补全的条形统计图如下图所示:
扇形区域所对应的圆心角的度数为:
;
(3)(万),
∴若该市有100万人口,市民认为“工业污染和汽车尾气排放是雾霾天气主要成因”的人数约为75万人.
【点睛】
本题考查了条形统计图、扇形统计图、统计表,读懂图形,找出必要的信息是解题的关键.
24、120
【解析】
设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,根据用1250元所购件数是第一批的2倍,列方程求解.
【详解】
解:设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,
由题意得,×2=,
解得:x=120,
经检验:x=120是原分式方程的解,且符合题意.
答:第一批水果每件进价为120元.
【点睛】
本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.
山东省枣庄市山亭区2021-2022学年中考数学模拟精编试卷含解析: 这是一份山东省枣庄市山亭区2021-2022学年中考数学模拟精编试卷含解析,共27页。试卷主要包含了考生必须保证答题卡的整洁,下列运算中,正确的是,下列计算正确的是,下面运算结果为的是,下列运算错误的是等内容,欢迎下载使用。
山东省东营邹平县联考2021-2022学年中考数学模拟精编试卷含解析: 这是一份山东省东营邹平县联考2021-2022学年中考数学模拟精编试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2022届山东省新泰市中考数学模拟精编试卷含解析: 这是一份2022届山东省新泰市中考数学模拟精编试卷含解析,共17页。试卷主要包含了答题时请按要求用笔,如图,内接于,若,则等内容,欢迎下载使用。