江苏省南京市联合体市级名校2022年十校联考最后数学试题含解析
展开1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列命题中真命题是( )
A.若a2=b2,则a=b B.4的平方根是±2
C.两个锐角之和一定是钝角 D.相等的两个角是对顶角
2.若3x>﹣3y,则下列不等式中一定成立的是 ( )
A.B.C.D.
3.已知关于x的不等式组﹣1<2x+b<1的解满足0<x<2,则b满足的条件是( )
A.0<b<2B.﹣3<b<﹣1C.﹣3≤b≤﹣1D.b=﹣1或﹣3
4.如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数(k>0,x>0)的图象经过点C,则k的值为( )
A. B. C. D.
5.如图的平面图形绕直线l旋转一周,可以得到的立体图形是( )
A.B.C.D.
6.函数y=中自变量x的取值范围是
A.x≥0B.x≥4C.x≤4D.x>4
7.若2m﹣n=6,则代数式m-n+1的值为( )
A.1B.2C.3D.4
8.如图是由6个完全相同的小长方体组成的立体图形,这个立体图形的左视图是( )
A.B.
C.D.
9.已知代数式x+2y的值是5,则代数式2x+4y+1的值是( )
A.6 B.7 C.11 D.12
10.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F, S△AEF=3,则S△FCD为( )
A.6B.9C.12D.27
二、填空题(共7小题,每小题3分,满分21分)
11.27的立方根为 .
12.用半径为6cm,圆心角为120°的扇形围成一个圆锥,则圆锥的底面圆半径为_______cm.
13.如图,AB是⊙O的直径,点E是的中点,连接AF交过E的切线于点D,AB的延长线交该切线于点C,若∠C=30°,⊙O的半径是2,则图形中阴影部分的面积是_____.
14.如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为_____.
15.如图,Rt△ABC中,若∠C=90°,BC=4,tanA=,则AB=___.
16.已知关于的一元二次方程的两个实数根分别是x =-2,x =4,则的值为________.
17.关于x的一元二次方程有两个不相等的实数根,则k的取值范围是 ▲ .
三、解答题(共7小题,满分69分)
18.(10分)如图,已知△ABC,以A为圆心AB为半径作圆交AC于E,延长BA交圆A于D连DE并延长交BC于F,
(1)判断△ABC的形状,并证明你的结论;
(2)如图1,若BE=CE=,求⊙A的面积;
(3)如图2,若tan∠CEF=,求cs∠C的值.
19.(5分)如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D求证:AC∥DE;若BF=13,EC=5,求BC的长.
20.(8分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.
m= %,这次共抽取 名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?
21.(10分)已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.
(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;
(2)若某函数是反比例函数(k>0),它的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;
(3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标_____,写出符合题意的其中一条抛物线解析式_____,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数?_____.(本小题只需直接写出答案)
22.(10分)如图,在△ABC中,BC=6,AB=AC,E,F分别为AB,AC上的点(E,F不与A重合),且EF∥BC.将△AEF沿着直线EF向下翻折,得到△A′EF,再展开.
(1)请判断四边形AEA′F的形状,并说明理由;
(2)当四边形AEA′F是正方形,且面积是△ABC的一半时,求AE的长.
23.(12分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:
若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元.
(1)求y与x之间的函数关系式;
(2)若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.
24.(14分)如图,已知⊙O中,AB为弦,直线PO交⊙O于点M、N,PO⊥AB于C,过点B作直径BD,连接AD、BM、AP.
(1)求证:PM∥AD;
(2)若∠BAP=2∠M,求证:PA是⊙O的切线;
(3)若AD=6,tan∠M=,求⊙O的直径.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.
【详解】
A、若a2=b2,则a=±b,错误,是假命题;
B、4的平方根是±2,正确,是真命题;
C、两个锐角的和不一定是钝角,故错误,是假命题;
D、相等的两个角不一定是对顶角,故错误,是假命题.
故选B.
【点睛】
考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.
2、A
【解析】
两边都除以3,得x>﹣y,两边都加y,得:x+y>0,
故选A.
3、C
【解析】
根据不等式的性质得出x的解集,进而解答即可.
【详解】
∵-1<2x+b<1
∴,
∵关于x的不等式组-1<2x+b<1的解满足0<x<2,
∴,
解得:-3≤b≤-1,
故选C.
【点睛】
此题考查解一元一次不等式组,关键是根据不等式的性质得出x的解集.
4、D
【解析】解:∵四边形ABCD是平行四边形,点A的坐标为(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=,∴C(1,),∴k=,故选D.
点睛:本题考查了平行四边形的性质,掌握平行四边形的性质以及反比例函数图象上点的坐标特征是解题的关键.
5、B
【解析】
根据面动成体以及长方形绕一边所在直线旋转一周得圆柱即可得答案.
【详解】
由图可知所给的平面图形是一个长方形,
长方形绕一边所在直线旋转一周得圆柱,
故选B.
【点睛】
本题考查了点、线、面、体,熟记各种常见平面图形旋转得到的立体图形是解题关键.
6、B
【解析】
根据二次根式的性质,被开方数大于等于0,列不等式求解.
【详解】
根据题意得:x﹣1≥0,解得x≥1,
则自变量x的取值范围是x≥1.
故选B.
【点睛】
本题主要考查函数自变量的取值范围的知识点,注意:二次根式的被开方数是非负数.
7、D
【解析】
先对m-n+1变形得到(2m﹣n)+1,再将2m﹣n=6整体代入进行计算,即可得到答案.
【详解】
mn+1
=(2m﹣n)+1
当2m﹣n=6时,原式=×6+1=3+1=4,故选:D.
【点睛】
本题考查代数式,解题的关键是掌握整体代入法.
8、B
【解析】
根据题意找到从左面看得到的平面图形即可.
【详解】
这个立体图形的左视图是,
故选:B.
【点睛】
本题考查了简单组合体的三视图,解题的关键是掌握左视图所看的位置.
9、C
【解析】
根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.
【详解】
∵x+2y=5,
∴2x+4y=10,
则2x+4y+1=10+1=1.
故选C.
【点睛】
此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.
10、D
【解析】
先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性质即可得出结论.
【详解】
解:∵四边形ABCD是平行四边形,AE:EB=1:2,
∴AE:CD=1:3,
∵AB∥CD,
∴∠EAF=∠DCF,
∵∠DFC=∠AFE,
∴△AEF∽△CDF,
∵S△AEF=3,
∴==()2,
解得S△FCD=1.
故选D.
【点睛】
本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
找到立方等于27的数即可.
解:∵11=27,
∴27的立方根是1,
故答案为1.
考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算
12、1.
【解析】
解:设圆锥的底面圆半径为r,
根据题意得1πr=,
解得r=1,
即圆锥的底面圆半径为1cm.
故答案为:1.
【点睛】
本题考查圆锥的计算,掌握公式正确计算是解题关键.
13、
【解析】
首先根据切线的性质及圆周角定理得CE的长以及圆周角度数,进而利用锐角三角函数关系得出DE,AD的长,利用S△ADE﹣S扇形FOE=图中阴影部分的面积求出即可.
【详解】
解:连接OE,OF、EF,
∵DE是切线,
∴OE⊥DE,
∵∠C=30°,OB=OE=2,
∴∠EOC=60°,OC=2OE=4,
∴CE=OC×sin60°=
∵点E是弧BF的中点,
∴∠EAB=∠DAE=30°,
∴F,E是半圆弧的三等分点,
∴∠EOF=∠EOB=∠AOF=60°,
∴OE∥AD,∠DAC=60°,
∴∠ADC=90°,
∵CE=AE=
∴DE=,
∴AD=DE×tan60°=
∴S△ADE
∵△FOE和△AEF同底等高,
∴△FOE和△AEF面积相等,
∴图中阴影部分的面积为:S△ADE﹣S扇形FOE
故答案为
【点睛】
此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出△FOE和△AEF面积相等是解题关键.
14、1-1
【解析】
设两个正方形的边长是x、y(x<y),得出方程x2=1,y2=9,求出x=,y=1,代入阴影部分的面积是(y﹣x)x求出即可.
【详解】
设两个正方形的边长是x、y(x<y),则x2=1,y2=9,x,y=1,则阴影部分的面积是(y﹣x)x=(11.
故答案为11.
【点睛】
本题考查了二次根式的应用,主要考查学生的计算能力.
15、1.
【解析】
在Rt△ABC中,已知tanA,BC的值,根据tanA=,可将AC的值求出,再由勾股定理可将斜边AB的长求出.
【详解】
解:Rt△ABC中,∵BC=4,tanA=
∴
则
故答案为1.
【点睛】
考查解直角三角形以及勾股定理,熟练掌握锐角三角函数是解题的关键.
16、-10
【解析】
根据根与系数的关系得出-2+4=-m,-2×4=n,求出即可.
【详解】
∵关于x的一元二次方程的两个实数根分别为x =-2,x =4,
∴−2+4=−m,−2×4=n,
解得:m=−2,n=−8,
∴m+n=−10,
故答案为:-10
【点睛】
此题考查根与系数的关系,掌握运算法则是解题关键
17、k<且k≠1.
【解析】
根据一元二次方程kx2-x+1=1有两个不相等的实数根,知△=b2-4ac>1,然后据此列出关于k的方程,解方程,结合一元二次方程的定义即可求解:
∵有两个不相等的实数根,
∴△=1-4k>1,且k≠1,解得,k<且k≠1.
三、解答题(共7小题,满分69分)
18、 (1) △ABC为直角三角形,证明见解析;(2)12π;(3).
【解析】
(1)由,得△CEF∽△CBE,∴∠CBE=∠CEF,由BD为直径,得∠ADE+∠ABE=90°,即可得∠DBC=90°故△ABC为直角三角形.(2)设∠EBC=∠ECB=x,根据等腰三角形的性质与直角三角形的性质易得 x=30°,则∠ABE=60°故AB=BE=,则可求出求⊙A的面积;(3)由(1)知∠D=∠CFE=∠CBE,故tan∠CBE=,设EF=a,BE=2a,利用勾股定理求出 BD=2BF=,得AD=AB=,DE=2BE=4a,过F作FK∥BD交CE于K,利用平行线分线段成比例得,求得 , 即可求出tan∠C= 再求出cs∠C即可.
【详解】
解:∵,
∴,
∴△CEF∽△CBE,
∴∠CBE=∠CEF,
∵AE=AD,
∴∠ADE=∠AED=∠FEC=∠CBE,
∵BD为直径,
∴∠ADE+∠ABE=90°,
∴∠CBE+∠ABE=90°,
∴∠DBC=90°△ABC为直角三角形.
(2)∵BE=CE
∴设∠EBC=∠ECB=x,
∴∠BDE=∠EBC=x,
∵AE=AD
∴∠AED=∠ADE=x,
∴∠CEF=∠AED=x
∴∠BFE=2x
在△BDF中由△内角和可知:
3x=90°
∴x=30°
∴∠ABE=60°
∴AB=BE=
∴
(3)由(1)知:∠D=∠CFE=∠CBE,
∴tan∠CBE=,
设EF=a,BE=2a,
∴BF=,BD=2BF=,
∴AD=AB=,
∴,DE=2BE=4a,过F作FK∥BD交CE于K,
∴,
∵,
∴
∴,
∴tan∠C=
∴cs∠C=.
【点睛】
此题主要考查圆内的三角形综合问题,解题的关键是熟知圆的切线定理,等腰三角形的性质,及相似三角形的性质.
19、(1)证明见解析;(2)4.
【解析】
(1)首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE;(2)根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案.
【详解】
解:(1)在△ABC和△DFE中
,
∴△ABC≌△DFE(SAS),
∴∠ACE=∠DEF,
∴AC∥DE;
(2)∵△ABC≌△DFE,
∴BC=EF,
∴CB﹣EC=EF﹣EC,
∴EB=CF,
∵BF=13,EC=5,
∴EB=4,
∴CB=4+5=1.
【点睛】
考点:全等三角形的判定与性质.
20、 (1)、26%;50;(2)、公交车;(3)、300名.
【解析】
试题分析:(1)、用1减去其它3个的百分比,从而得出m的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数×骑自行车的百分比得出人数.
试题解析:(1)、1﹣14%﹣20%﹣40%=26%; 20÷40%=50;
骑自行车人数:50-20-13-7=10(名) 则条形图如图所示:
(2)、由图可知,采用乘公交车上学的人数最多
(3)、该校骑自行车上学的人数约为:1500×20%=300(名).
答:该校骑自行车上学的学生有300名.
考点:统计图
21、(1);(2);(3)(﹣1,3);(7,﹣3);(﹣4,7);(4,1),对应的抛物线分别为 ; ;,偶数.
【解析】
(1)设正方形ABCD的边长为a,当点A在x轴负半轴、点B在y轴正半轴上时,可知3a=,求出a,
(2)作DE、CF分别垂直于x、y轴,可知ADE≌△BAO≌△CBF,列出m的等式解出m,
(3)本问的抛物线解析式不止一个,求出其中一个.
【详解】
解:(1)∵正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.
当点A在x轴正半轴、点B在y轴负半轴上时,
∴AO=1,BO=1,
∴正方形ABCD的边长为 ,
当点A在x轴负半轴、点B在y轴正半轴上时,
设正方形的边长为a,得3a=,
∴ ,
所以伴侣正方形的边长为或;
(2)作DE、CF分别垂直于x、y轴,
知△ADE≌△BAO≌△CBF,
此时,m<2,DE=OA=BF=m
OB=CF=AE=2﹣m
∴OF=BF+OB=2
∴C点坐标为(2﹣m,2),
∴2m=2(2﹣m)
解得m=1,
反比例函数的解析式为y= ,
(3)根据题意画出图形,如图所示:
过C作CF⊥x轴,垂足为F,过D作DE⊥CF,垂足为E,
∴△CED≌△DGB≌△AOB≌△AFC,
∵C(3,4),即CF=4,OF=3,
∴EG=3,DE=4,故DG=DE﹣GE=DE﹣OF=4﹣3=1,
则D坐标为(﹣1,3);
设过D与C的抛物线的解析式为:y=ax2+b,
把D和C的坐标代入得: ,
解得 ,
∴满足题意的抛物线的解析式为y=x2+ ;
同理可得D的坐标可以为:(7,﹣3);(﹣4,7);(4,1),;
对应的抛物线分别为 ; ;,
所求的任何抛物线的伴侣正方形个数为偶数.
【点睛】
本题考查了二次函数的综合题.灵活运用相关知识是解题关键.
22、(1)四边形AEA′F为菱形.理由见解析;(2)1.
【解析】
(1)先证明AE=AF,再根据折叠的性质得AE=A′E,AF=A′F,然后根据菱形的判定方法可判断四边形AEA′F为菱形;(2)四先利用四边形AEA′F是正方形得到∠A=90°,则AB=AC=BC=6,然后利用正方形AEA′F的面积是△ABC的一半得到AE2=••6•6,然后利用算术平方根的定义求AE即可.
【详解】
(1)四边形AEA′F为菱形.
理由如下:
∵AB=AC,
∴∠B=∠C,
∵EF∥BC,
∴∠AEF=∠B,∠AFE=∠C,
∴∠AEF=∠AFE,
∴AE=AF,
∵△AEF沿着直线EF向下翻折,得到△A′EF,
∴AE=A′E,AF=A′F,
∴AE=A′E=AF=A′F,
∴四边形AEA′F为菱形;
(2)∵四边形AEA′F是正方形,
∴∠A=90°,
∴△ABC为等腰直角三角形,
∴AB=AC=BC=×6=6,
∵正方形AEA′F的面积是△ABC的一半,
∴AE2=••6•6,
∴AE=1.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
23、 (1)y=﹣3.4x+141.1;(1)当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.
【解析】
(1)根据题意可以得装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x﹣(1x+1)=(12﹣3x)辆,从而可以得到y与x的函数关系式;
(1)根据装花椒的汽车不超过8辆,可以求得x的取值范围,从而可以得到y的最大值,从而可以得到总利润最大时,装运各种产品的车辆数.
【详解】
(1)若装运核桃的汽车为x辆,则装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x﹣(1x+1)=(12﹣3x)辆,
根据题意得:y=10×0.7x+4×0.5(1x+1)+6×0.8(12﹣3x)=﹣3.4x+141.1.
(1)根据题意得:,
解得:7≤x≤,
∵x为整数,
∴7≤x≤2.
∵10.6>0,
∴y随x增大而减小,
∴当x=7时,y取最大值,最大值=﹣3.4×7+141.1=117.4,此时:1x+1=12,12﹣3x=1.
答:当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.
【点睛】
本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.
24、(1)证明见解析;(2)证明见解析;(3)1;
【解析】
(1)根据平行线的判定求出即可;(2)连接OA,求出∠OAP=∠BAP+∠OAB=∠BOC+∠OBC=90°,根据切线的判定得出即可;(3)设BC=x,CM=2x,根据相似三角形的性质和判定求出NC=x,求出MN=2x+x=2.1x,OM=MN=1.21x,OC=0.71x,根据三角形的中位线性质得出0.71x=AD=3,求出x即可.
【详解】
(1)∵BD是直径,
∴∠DAB=90°,
∵PO⊥AB,
∴∠DAB=∠MCB=90°,
∴PM∥AD;
(2)连接OA,
∵OB=OM,
∴∠M=∠OBM,
∴∠BON=2∠M,
∵∠BAP=2∠M,
∴∠BON=∠BAP,
∵PO⊥AB,
∴∠ACO=90°,
∴∠AON+∠OAC=90°,
∵OA=OB,
∴∠BON=∠AON,
∴∠BAP=∠AON,
∴∠BAP+∠OAC=90°,
∴∠OAP=90°,
∵OA是半径,
∴PA是⊙O的切线;
(3)连接BN,
则∠MBN=90°.
∵tan∠M=,
∴=,
设BC=x,CM=2x,
∵MN是⊙O直径,NM⊥AB,
∴∠MBN=∠BCN=∠BCM=90°,
∴∠NBC=∠M=90°﹣∠BNC,
∴△MBC∽△BNC,
∴,
∴BC2=NC×MC,
∴NC=x,
∴MN=2x+x=2.1x,
∴OM=MN=1.21x,
∴OC=2x﹣1.21x=0.71x,
∵O是BD的中点,C是AB的中点,AD=6,
∴OC=0.71x=AD=3,
解得:x=4,
∴MO=1.21x=1.21×4=1,
∴⊙O的半径为1.
【点睛】
本题考查了圆周角定理,切线的性质和判定,相似三角形的性质和判定等知识点,能灵活运用知识点进行推理是解此题的关键,此题有一定的难度.
产品名称
核桃
花椒
甘蓝
每辆汽车运载量(吨)
10
6
4
每吨土特产利润(万元)
0.7
0.8
0.5
江西省石城县市级名校2021-2022学年十校联考最后数学试题含解析: 这是一份江西省石城县市级名校2021-2022学年十校联考最后数学试题含解析,共25页。
2022届浙江省杭州市富阳区市级名校十校联考最后数学试题含解析: 这是一份2022届浙江省杭州市富阳区市级名校十校联考最后数学试题含解析,共17页。
2022届湖北省恩施州市级名校十校联考最后数学试题含解析: 这是一份2022届湖北省恩施州市级名校十校联考最后数学试题含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,已知点A,下列交通标志是中心对称图形的为等内容,欢迎下载使用。