江苏省盐城市大丰区实验初级中学2021-2022学年中考考前最后一卷数学试卷含解析
展开1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是( )
A.掷一枚正六面体的骰子,出现1点的概率
B.抛一枚硬币,出现正面的概率
C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率
D.任意写一个整数,它能被2整除的概率
2.如图所示,数轴上两点A,B分别表示实数a,b,则下列四个数中最大的一个数是( )
A.a B.b C.D.
3.若分式的值为0,则x的值为( )
A.-2B.0C.2D.±2
4.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()
A.y=2n+1B.y=2n+nC.y=2n+1+nD.y=2n+n+1
5.如图,AB是⊙O的直径,AB=8,弦CD垂直平分OB,E是弧AD上的动点,AF⊥CE于点F,点E在弧AD上从A运动到D的过程中,线段CF扫过的面积为( )
A.4π+3B.4π+C.π+D.π+3
6.如图,正六边形ABCDEF内接于,M为EF的中点,连接DM,若的半径为2,则MD的长度为
A.B.C.2D.1
7.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是( )
A.甲超市的利润逐月减少
B.乙超市的利润在1月至4月间逐月增加
C.8月份两家超市利润相同
D.乙超市在9月份的利润必超过甲超市
8.下列运算正确的是( )
A.(a﹣3)2=a2﹣9B.()﹣1=2C.x+y=xyD.x6÷x2=x3
9.下列运算正确的是( )
A.B.
C.D.
10.下列图形中一定是相似形的是( )
A.两个菱形B.两个等边三角形C.两个矩形D.两个直角三角形
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知一次函数y=ax+b的图象如图所示,根据图中信息请写出不等式ax+b≥2的解集为___________.
12.如图,矩形ABCD中,E为BC的中点,将△ABE沿直线AE折叠时点B落在点F处,连接FC,若∠DAF=18°,则∠DCF=_____度.
13.若关于x的一元二次方程kx2+2(k+1)x+k-1=0有两个实数根,则k的取值范围是
14.如图是“已知一条直角边和斜边作直角三角形”的尺规作图过程
已知:线段a、b,
求作:.使得斜边AB=b,AC=a
作法:如图.
(1)作射线AP,截取线段AB=b;
(2)以AB为直径,作⊙O;
(3)以点A为圆心,a的长为半径作弧交⊙O于点C;
(4)连接AC、CB.即为所求作的直角三角形.
请回答:该尺规作图的依据是______.
15.某市居民用电价格如表所示:
小芳家二月份用电200千瓦时,交电费105元,则a=______.
16.如图,直径为1000mm的圆柱形水管有积水(阴影部分),水面的宽度AB为800mm,则水的最大深度CD是______mm.
三、解答题(共8题,共72分)
17.(8分)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.
18.(8分)如图,在直角坐标系xOy中,直线与双曲线相交于A(-1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.
求m、n的值;求直线AC的解析式.
19.(8分)在平面直角坐标系xOy中有不重合的两个点与.若Q、P为某个直角三角形的两个锐角顶点,当该直角三角形的两条直角边分别与x轴或y轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q与点P之间的“直距”记做,特别地,当PQ与某条坐标轴平行(或重合)时,线段PQ的长即为点Q与点P之间的“直距”.例如下图中,点,点,此时点Q与点P之间的“直距”.
(1)①已知O为坐标原点,点,,则_________,_________;
②点C在直线上,求出的最小值;
(2)点E是以原点O为圆心,1为半径的圆上的一个动点,点F是直线上一动点.直接写出点E与点F之间“直距”的最小值.
20.(8分)已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.
21.(8分)如图,在四边形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,点E,F同时从B点出发,沿射线BC向右匀速移动,已知点F的移动速度是点E移动速度的2倍,以EF为一边在CB的上方作等边△EFG,设E点移动距离为x(0<x<6).
(1)∠DCB= 度,当点G在四边形ABCD的边上时,x= ;
(2)在点E,F的移动过程中,点G始终在BD或BD的延长线上运动,求点G在线段BD的中点时x的值;
(3)当2<x<6时,求△EFG与四边形ABCD重叠部分面积y与x之间的函数关系式,当x取何值时,y有最大值?并求出y的最大值.
22.(10分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.
(1)求证:∠BDC=∠A;
(2)若CE=4,DE=2,求AD的长.
23.(12分)某汽车制造公司计划生产A、B两种新型汽车共40辆投放到市场销售.已知A型汽车每辆成本34万元,售价39万元;B型汽车每辆成本42万元,售价50万元.若该公司对此项计划的投资不低于1536万元,不高于1552万元.请解答下列问题:
(1)该公司有哪几种生产方案?
(2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少?
(3)在(2)的情况下,公司决定拿出利润的2.5%全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案)
24.(1)如图1,半径为2的圆O内有一点P,切OP=1,弦AB过点P,则弦AB长度的最大值为__________;最小值为 ___________.
图 ①
(2)如图2,△ABC是葛叔叔家的菜地示意图,其中∠ABC=90°,AB=80米,BC=60米,现在他利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔想建的鱼塘是四边形ABCD,且满足∠ADC=60°,你认为葛叔叔的想法能实现吗?若能,求出这个四边形鱼塘面积和周长的最大值;若不能,请说明理由.
图 ②
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
解:A.掷一枚正六面体的骰子,出现1点的概率为,故此选项错误;
B.掷一枚硬币,出现正面朝上的概率为,故此选项错误;
C.从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:≈0.33;故此选项正确;
D.任意写出一个整数,能被2整除的概率为,故此选项错误.
故选C.
2、D
【解析】
∵负数小于正数,在(0,1)上的实数的倒数比实数本身大.
∴<a<b< ,
故选D.
3、C
【解析】
由题意可知:,
解得:x=2,
故选C.
4、B
【解析】
∵观察可知:左边三角形的数字规律为:1,2,…,n,
右边三角形的数字规律为:2,,…,,
下边三角形的数字规律为:1+2,,…,,
∴最后一个三角形中y与n之间的关系式是y=2n+n.
故选B.
【点睛】
考点:规律型:数字的变化类.
5、A
【解析】
连AC,OC,BC.线段CF扫过的面积=扇形MAH的面积+△MCH的面积,从而证明即可解决问题.
【详解】
如下图,连AC,OC,BC,设CD交AB于H,
∵CD垂直平分线段OB,
∴CO=CB,
∵OC=OB,
∴OC=OB=BC,
∴,
∵AB是直径,
∴,
∴,
∵,
∴点F在以AC为直径的⊙M上运动,当E从A运动到D时,点F从A运动到H,连接MH,
∵MA=MH,
∴
∴,
∵,
∴CF扫过的面积为,
故选:A.
【点睛】
本题主要考查了阴影部分面积的求法,熟练掌握扇形的面积公式及三角形的面积求法是解决本题的关键.
6、A
【解析】
连接OM、OD、OF,由正六边形的性质和已知条件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函数求出OM,再由勾股定理求出MD即可.
【详解】
连接OM、OD、OF,
∵正六边形ABCDEF内接于⊙O,M为EF的中点,
∴OM⊥OD,OM⊥EF,∠MFO=60°,
∴∠MOD=∠OMF=90°,
∴OM=OF•sin∠MFO=2×=,
∴MD=,
故选A.
【点睛】
本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.
7、D
【解析】
【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.
【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;
B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;
C、8月份两家超市利润相同,此选项正确,不符合题意;
D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,
故选D.
【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.
8、B
【解析】
分析:根据完全平方公式、负整数指数幂,合并同类项以及同底数幂的除法的运算法则进行计算即可判断出结果.
详解:A. (a﹣3)2=a2﹣6a+9,故该选项错误;
B. ()﹣1=2,故该选项正确;
C.x与y不是同类项,不能合并,故该选项错误;
D. x6÷x2=x6-2=x4,故该选项错误.
故选B.
点睛:可不是主要考查了完全平方公式、负整数指数幂,合并同类项以及同度数幂的除法的运算,熟记它们的运算法则是解题的关键.
9、D
【解析】
由去括号法则:如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;完全平方公式:(a±b)2=a2±2ab+b2;单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式进行计算即可.
【详解】
解:A、a-(b+c)=a-b-c≠a-b+c,故原题计算错误;
B、(x+1)2=x2+2x+1≠x²+1,故原题计算错误;
C、(-a)3=≠,故原题计算错误;
D、2a2•3a3=6a5,故原题计算正确;
故选:D.
【点睛】
本题考查了整式的乘法,解题的关键是掌握有关计算法则.
10、B
【解析】
如果两个多边形的对应角相等,对应边的比相等,则这两个多边形是相似多边形.
【详解】
解:∵等边三角形的对应角相等,对应边的比相等,
∴两个等边三角形一定是相似形,
又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,
∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,
故选:B.
【点睛】
本题考查了相似多边形的识别.判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、x≥1.
【解析】
试题分析:根据题意得当x≥1时,ax+b≥2,即不等式ax+b≥2的解集为x≥1.
故答案为x≥1.
考点: 一次函数与一元一次不等式.
12、1 .
【解析】
由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,求出∠BAE=∠FAE=1°,由直角三角形的性质得出∠AEF=∠AEB=54°,求出∠CEF=72°,求出FE=CE,由等腰三角形的性质求出∠ECF=54°,即可得出∠DCF的度数.
【详解】
解:∵四边形ABCD是矩形,
∴∠BAD=∠B=∠BCD=90°,
由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,
∵∠DAF=18°,
∴∠BAE=∠FAE=×(90°﹣18°)=1°,
∴∠AEF=∠AEB=90°﹣1°=54°,
∴∠CEF=180°﹣2×54°=72°,
∵E为BC的中点,
∴BE=CE,
∴FE=CE,
∴∠ECF=×(180°﹣72°)=54°,
∴∠DCF=90°﹣∠ECF=1°.
故答案为1.
【点睛】
本题考查了矩形的性质、折叠变换的性质、直角三角形的性质、等腰三角形的性质、三角形内角和定理等知识点,求出∠ECF的度数是解题的关键.
13、k≥,且k≠1
【解析】
试题解析:∵a=k,b=2(k+1),c=k-1,
∴△=4(k+1)2-4×k×(k-1)=3k+1≥1,
解得:k≥-,
∵原方程是一元二次方程,
∴k≠1.
考点:根的判别式.
14、等圆的半径相等,直径所对的圆周角是直角,三角形定义
【解析】
根据圆周角定理可判断△ABC为直角三角形.
【详解】
根据作图得AB为直径,则利用圆周角定理可判断∠ACB=90°,从而得到△ABC满足条件.
故答案为:等圆的半径相等,直径所对的圆周角是直角,三角形定义.
【点睛】
本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.
15、150
【解析】
根据题意可得等量关系:不超过a千瓦时的电费+超过a千瓦时的电费=105元;根据等量关系列出方程,解出a的值即可.
【详解】
∵0.5×200=100<105,
∴a<200.
由题意得:0.5a+0.6(200-a)=105,
解得:a=150.
故答案为:150
【点睛】
此题主要考查了一元一次方程的应用,关键是正确找出题目中的等量关系,列出方程.
16、200
【解析】
先求出OA的长,再由垂径定理求出AC的长,根据勾股定理求出OC的长,进而可得出结论.
【详解】
解:∵⊙O的直径为1000mm,
∴OA=OA=500mm.
∵OD⊥AB,AB=800mm,
∴AC=400mm,
∴OC== =300mm,
∴CD=OD-OC=500-300=200(mm).
答:水的最大深度为200mm.
故答案为:200
【点睛】
本题考查的是垂径定理的应用,根据勾股定理求出OC的长是解答此题的关键.
三、解答题(共8题,共72分)
17、证明见解析.
【解析】
试题分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.
试题解析:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.
考点:平行四边形的判定与性质.
18、(1)m=-1,n=-1;(2)y=-x+
【解析】
(1)由直线与双曲线相交于A(-1,a)、B两点可得B点横坐标为1,点C的坐标为(1,0),再根据△AOC的面积为1可求得点A的坐标,从而求得结果;
(2)设直线AC的解析式为y=kx+b,由图象过点A(-1,1)、C(1,0)根据待定系数法即可求的结果.
【详解】
(1)∵直线与双曲线相交于A(-1,a)、B两点,
∴B点横坐标为1,即C(1,0)
∵△AOC的面积为1,
∴A(-1,1)
将A(-1,1)代入,可得m=-1,n=-1;
(2)设直线AC的解析式为y=kx+b
∵y=kx+b经过点A(-1,1)、C(1,0)
∴解得k=-,b=.
∴直线AC的解析式为y=-x+.
【点睛】
本题考查了一次函数与反比例函数图象的交点问题,此类问题是初中数学的重点,在中考中极为常见,熟练掌握待定系数法是解题关键.
19、(1)①3,1;②最小值为3;(1)
【解析】
(1)①根据点Q与点P之间的“直距”的定义计算即可;
②如图3中,由题意,当DCO为定值时,点C的轨迹是以点O为中心的正方形(如左边图),当DCO=3时,该正方形的一边与直线y=-x+3重合(如右边图),此时DCO定值最小,最小值为3;
(1)如图4中,平移直线y=1x+4,当平移后的直线与⊙O在左边相切时,设切点为E,作EF∥x轴交直线y=1x+4于F,此时DEF定值最小;
【详解】
解:(1)①如图1中,
观察图象可知DAO=1+1=3,DBO=1,
故答案为3,1.
②(i)当点C在第一象限时(),根据题意可知,为定值,设点C坐标为,则,即此时为3;
(ii)当点C在坐标轴上时(,),易得为3;
(ⅲ)当点C在第二象限时(),可得;
(ⅳ)当点C在第四象限时(),可得;
综上所述,当时,取得最小值为3;
(1)如解图②,可知点F有两种情形,即过点E分别作y轴、x轴的垂线与直线分别交于、;如解图③,平移直线使平移后的直线与相切,平移后的直线与x轴交于点G,设直线与x轴交于点M,与y轴交于点N,观察图象,此时即为点E与点F之间“直距”的最小值.连接OE,易证,∴,在中由勾股定理得,∴,解得,∴.
【点睛】
本题考查一次函数的综合题,点Q与点P之间的“直距”的定义,圆的有关知识,正方形的性质等知识,解题的关键是理解题意,学会利用新的定义,解决问题,属于中考压轴题.
失分原因
第(1)问 (1)不能根据定义找出AO、BO的“直距”分属哪种情形;
(1)不能找出点C在不同位置时, 的取值情况,并找到 的最小值第(1)问 (1)不能根据定义正确找出点E与点F之间“直距” 取最小值时点E、F 的位置;
(1)不能想到由相似求出GO的值
20、等腰直角三角形
【解析】
首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断△ABC的形状.
【详解】
解:∵a2c2-b2c2=a4-b4,
∴a4-b4-a2c2+b2c2=0,
∴(a4-b4)-(a2c2-b2c2)=0,
∴(a2+b2)(a2-b2)-c2(a2-b2)=0,
∴(a2+b2-c2)(a2-b2)=0
得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,
即△ABC为直角三角形或等腰三角形或等腰直角三角形.
考点:勾股定理的逆定理.
21、 (1) 30;2;(2)x=1;(3)当x=时,y最大=;
【解析】
(1)如图1中,作DH⊥BC于H,则四边形ABHD是矩形.AD=BH=3,BC=6,CH=BC﹣BH=3,当等边三角形△EGF的高= 时,点G在AD上,此时x=2;
(2)根据勾股定理求出的长度,根据三角函数,求出∠ADB=30°,根据中点的定义得出根据等边三角形的性质得到,即可求出x的值;
(3)图2,图3三种情形解决问题.①当2
(1)作DH⊥BC于H,则四边形ABHD是矩形.
∵AD=BH=3,BC=6,
∴CH=BC﹣BH=3,
在Rt△DHC中,CH=3,
∴
当等边三角形△EGF的高等于时,点G在AD上,此时x=2,∠DCB=30°,
故答案为30,2,
(2)如图
∵AD∥BC
∴∠A=180°﹣∠ABC=180°﹣90°=90°
在Rt△ABD中,
∴∠ADB=30°
∵G是BD的中点
∴
∵AD∥BC
∴∠ADB=∠DBC=30°
∵△GEF是等边三角形,
∴∠GFE=60°
∴∠BGF=90°
在Rt△BGF中,
∴2x=2即x=1;
(3)分两种情况:
当2<x<3,如图2
点E、点F在线段BC上△GEF与四边形ABCD重叠部分为四边形EFNM
∵∠FNC=∠GFE﹣∠DCB=60°﹣30°=30°
∴∠FNC=∠DCB
∴FN=FC=6﹣2x
∴GN=x﹣(6﹣2x)=3x﹣6
∵∠FNC=∠GNM=30°,∠G=60°
∴∠GMN=90°
在Rt△GNM中,
∴
∴当时,最大
当3≤x<6时,如图3,
点E在线段BC上,点F在线段BC的延长线上,△GEF与四边形ABCD重叠部分为△ECP
∵∠PCE=30°,∠PEC=60°
∴∠EPC=90°
在Rt△EPC中EC=6﹣x,
对称轴为
当x<6时,y随x的增大而减小
∴当x=3时,最大
综上所述:当时,最大
【点睛】
属于四边形的综合题,考查动点问题,等边三角形的性质,三角函数,二次函数的最值等,综合性比较强,难度较大.
22、(1)证明过程见解析;(2)1.
【解析】
试题分析:(1)连接OD,由CD是⊙O切线,得到∠ODC=90°,根据AB为⊙O的直径,得到∠ADB=90°,等量代换得到∠BDC=∠ADO,根据等腰直角三角形的性质得到∠ADO=∠A,即可得到结论;(2)根据垂直的定义得到∠E=∠ADB=90°,根据平行线的性质得到∠DCE=∠BDC,根据相似三角形的性质得到,解方程即可得到结论.
试题解析:(1)连接OD, ∵CD是⊙O切线, ∴∠ODC=90°, 即∠ODB+∠BDC=90°,
∵AB为⊙O的直径, ∴∠ADB=90°, 即∠ODB+∠ADO=90°, ∴∠BDC=∠ADO,
∵OA=OD, ∴∠ADO=∠A, ∴∠BDC=∠A;
(2)∵CE⊥AE, ∴∠E=∠ADB=90°, ∴DB∥EC, ∴∠DCE=∠BDC, ∵∠BDC=∠A, ∴∠A=∠DCE,
∵∠E=∠E, ∴△AEC∽△CED, ∴, ∴EC2=DE•AE, ∴11=2(2+AD), ∴AD=1.
考点:(1)切线的性质;(2)相似三角形的判定与性质.
23、(1)共有三种方案,分别为①A型号16辆时, B型号24辆;②A型号17辆时,B型号23辆;③A型号18辆时,B型号22辆;(2)当时,万元;(3)A型号4辆,B型号8辆; A型号10辆,B型号 3辆两种方案
【解析】
(1)设A型号的轿车为x辆,可根据题意列出不等式组,根据问题的实际意义推出整数值;
(2)根据“利润=售价-成本”列出一次函数的解析式解答;
(3)根据(2)中方案设计计算.
【详解】
(1)设生产A型号x辆,则B型号(40-x)辆
153634x+42(40-x)1552
解得,x可以取值16,17,18共有三种方案,分别为
A型号16辆时, B型号24辆
A型号17辆时,B型号23辆
A型号18辆时,B型号22辆
(2)设总利润W万元
则W=
=
w随x的增大而减小
当时,万元
(3)A型号4辆,B型号8辆; A型号10辆,B型号 3辆两种方案
【点睛】
本题主要考查了一次函数的应用,以及一元一次不等式组的应用,此题是典型的数学建模问题,要先将实际问题转化为不等式组解应用题.
24、(1)弦AB长度的最大值为4,最小值为2;(2)面积最大值为(2500+2400)平方米,周长最大值为340米.
【解析】
(1)当AB是过P点的直径时,AB最长;当AB⊥OP时,AB最短,分别求出即可.(2)如图在△ABC的一侧以AC为边做等边三角形AEC,再做△AEC的外接圆,则满足∠ADC=60°的点D在优弧AEC上(点D不与A、C重合),当D与E重合时,S△ADC最大值=S△AEC,由S△ABC为定值,故此时四边形ABCD的面积最大,再根据勾股定理和等边三角形的性质求出此时的面积与周长即可.
【详解】
(1)(1)当AB是过P点的直径时,AB最长=2×2=4;
当AB⊥OP时,AB最短, AP=
∴AB=2
(2)如图,在△ABC的一侧以AC为边做等边三角形AEC,
再做△AEC的外接圆,
当D与E重合时,S△ADC最大
故此时四边形ABCD的面积最大,
∵∠ABC=90°,AB=80,BC=60
∴AC=
∴周长为AB+BC+CD+AE=80+60+100+100=340(米)
S△ADC=
S△ABC=
∴四边形ABCD面积最大值为(2500+2400)平方米.
【点睛】
此题主要考查圆的综合利用,解题的关键是熟知圆的性质定理与垂径定理.
用电量
不超过a千瓦时
超过a千瓦时的部分
单价(元/千瓦时)
0.5
0.6
江苏省盐城市大丰区沈灶中学2021-2022学年中考数学考前最后一卷含解析: 这是一份江苏省盐城市大丰区沈灶中学2021-2022学年中考数学考前最后一卷含解析,共21页。
江苏省盐城市大丰区第一共同体2021-2022学年中考数学考前最后一卷含解析: 这是一份江苏省盐城市大丰区第一共同体2021-2022学年中考数学考前最后一卷含解析,共25页。试卷主要包含了计算3a2-a2的结果是,下列方程中,没有实数根的是等内容,欢迎下载使用。
江苏省苏州市吴江区2021-2022学年中考考前最后一卷数学试卷含解析: 这是一份江苏省苏州市吴江区2021-2022学年中考考前最后一卷数学试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,对于不等式组,下列说法正确的是,计算的结果是等内容,欢迎下载使用。