|试卷下载
搜索
    上传资料 赚现金
    江苏省东台市第一联盟2021-2022学年中考联考数学试卷含解析
    立即下载
    加入资料篮
    江苏省东台市第一联盟2021-2022学年中考联考数学试卷含解析01
    江苏省东台市第一联盟2021-2022学年中考联考数学试卷含解析02
    江苏省东台市第一联盟2021-2022学年中考联考数学试卷含解析03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省东台市第一联盟2021-2022学年中考联考数学试卷含解析

    展开
    这是一份江苏省东台市第一联盟2021-2022学年中考联考数学试卷含解析,共27页。试卷主要包含了下列说法,如图所示,在平面直角坐标系中A等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是(  )
    A.无实数根
    B.有两个正根
    C.有两个根,且都大于﹣3m
    D.有两个根,其中一根大于﹣m
    2.实数a,b,c,d在数轴上的对应点的位置如图所示,下列结论①a<b;②|b|=|d|;③a+c=a;④ad>0中,正确的有(  )

    A.4个 B.3个 C.2个 D.1个
    3.若不等式组无解,那么m的取值范围是(  )
    A.m≤2 B.m≥2 C.m<2 D.m>2
    4.某市2010年元旦这天的最高气温是8℃,最低气温是﹣2℃,则这天的最高气温比最低气温高(  )
    A.10℃ B.﹣10℃ C.6℃ D.﹣6℃
    5.某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图所示.其中阅读时间是8~10小时的频数和频率分别是( )

    A.15,0.125 B.15,0.25 C.30,0.125 D.30,0.25
    6.将抛物线向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )
    A. B. C. D.
    7.下列说法:
    ① ;
    ②数轴上的点与实数成一一对应关系;
    ③﹣2是的平方根;
    ④任何实数不是有理数就是无理数;
    ⑤两个无理数的和还是无理数;
    ⑥无理数都是无限小数,
    其中正确的个数有(  )
    A.2个 B.3个 C.4个 D.5个
    8.如图所示,在平面直角坐标系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C;把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,则旋转第2017次后,得到的等腰直角三角形的直角顶点P2018的坐标为(  )

    A.(4030,1) B.(4029,﹣1)
    C.(4033,1) D.(4035,﹣1)
    9.如图所示几何体的主视图是( )

    A. B. C. D.
    10.已知二次函数(为常数),当时,函数的最小值为5,则的值为(  )
    A.-1或5 B.-1或3 C.1或5 D.1或3
    11.下列各数中,最小的数是( )
    A.﹣4 B.3 C.0 D.﹣2
    12.如图,点A、B在数轴上表示的数的绝对值相等,且,那么点A表示的数是  

    A. B. C. D.3
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.已知一个正六边形的边心距为,则它的半径为______ .
    14.如图,在平面直角坐标系中,菱形ABCD的顶点A的坐标为(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上.若抛物线y=-x2-5x+c经过点B、C,则菱形ABCD的面积为_______.

    15.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.
    其中正确的序号是   (把你认为正确的都填上).

    16.将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.
    17.若m﹣n=4,则2m2﹣4mn+2n2的值为_____.
    18.一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别.现从袋子中随机摸出一个球,则它是黑球的概率是______.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图1,图2…、图m是边长均大于2的三角形、四边形、…、凸n边形.分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧…、n条弧.

    (1)图1中3条弧的弧长的和为   ,图2中4条弧的弧长的和为   ;
    (2)求图m中n条弧的弧长的和(用n表示).
    20.(6分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.
    (1)求每部型手机和型手机的销售利润;
    (2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.
    ①求关于的函数关系式;
    ②该手机店购进型、型手机各多少部,才能使销售总利润最大?
    (3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.
    21.(6分)如图,已知点E,F分别是□ABCD的边BC,AD上的中点,且∠BAC=90°.

    (1)求证:四边形AECF是菱形;
    (2)若∠B=30°,BC=10,求菱形AECF面积.
    22.(8分)如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣3,0),B(1,0),与y轴相交于(0,﹣),顶点为P.
    (1)求抛物线解析式;
    (2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;
    (3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标,并求出平行四边形的面积.

    23.(8分)如图,已知CD=CF,∠A=∠E=∠DCF=90°,求证:AD+EF=AE

    24.(10分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:
    时间x(天)

    1≤x<50

    50≤x≤90

    售价(元/件)

    x+40

    90

    每天销量(件)

    200-2x

    已知该商品的进价为每件30元,设销售该商品的每天利润为y元[求出y与x的函数关系式;问销售该商品第几天时,当天销售利润最大,最大利润是多少?该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
    25.(10分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线DE交AC于点E.

    (1)求证:∠A=∠ADE;
    (2)若AB=25,DE=10,弧DC的长为a,求DE、EC和弧DC围成的部分的面积S.(用含字母a的式子表示).
    26.(12分)某区教育局为了解今年九年级学生体育测试情况,随机抽查了某班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:

    说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下
    (1)样本中D级的学生人数占全班学生人数的百分比是 ;
    (2)扇形统计图中A级所在的扇形的圆心角度数是 ;
    (3)请把条形统计图补充完整;
    (4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数之和.
    27.(12分)(问题情境)
    张老师给爱好学习的小军和小俊提出这样的一个问题:如图1,在△ABC中,AB=AC,点P为边BC上任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F,求证:PD+PE=CF.

    小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
    小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.
    [变式探究]
    如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;
    请运用上述解答中所积累的经验和方法完成下列两题:
    [结论运用]
    如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;
    [迁移拓展]
    图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    先整理为一般形式,用含m的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可.
    【详解】
    方程整理为,
    △,
    ∵,
    ∴,
    ∴△,
    ∴方程没有实数根,
    故选A.
    【点睛】
    本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
    2、B
    【解析】
    根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案.
    【详解】
    解:由数轴,得a=-3.5,b=-2,c=0,d=2,
    ①a<b,故①正确;②|b|=|d|,故②正确;③a+c=a,故③正确;④ad<0,故④错误;
    故选B.
    【点睛】
    本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义是解题关键.
    3、A
    【解析】
    先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m的取值范围.
    【详解】

    由①得,x<m,
    由②得,x>1,
    又因为不等式组无解,
    所以m≤1.
    故选A.
    【点睛】
    此题的实质是考查不等式组的求法,求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.
    4、A
    【解析】
    用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”即可求得答案.
    【详解】
    8-(-2)=8+2=10℃.
    即这天的最高气温比最低气温高10℃.
    故选A.
    5、D
    【解析】
    分析:
    根据频率分布直方图中的数据信息和被调查学生总数为120进行计算即可作出判断.
    详解:
    由频率分布直方图可知:一周内用于阅读的时间在8-10小时这组的:频率:组距=0.125,而组距为2,
    ∴一周内用于阅读的时间在8-10小时这组的频率=0.125×2=0.25,
    又∵被调查学生总数为120人,
    ∴一周内用于阅读的时间在8-10小时这组的频数=120×0.25=30.
    综上所述,选项D中数据正确.
    故选D.
    点睛:本题解题的关键有两点:(1)要看清,纵轴上的数据是“频率:组距”的值,而不是频率;(2)要弄清各自的频数、频率和总数之间的关系.
    6、A
    【解析】
    直接根据“上加下减,左加右减”的原则进行解答即可.
    【详解】
    将抛物线向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为,故答案选A.
    7、C
    【解析】
    根据平方根,数轴,有理数的分类逐一分析即可.
    【详解】
    ①∵,∴是错误的;
    ②数轴上的点与实数成一一对应关系,故说法正确;
    ③∵=4,故-2是 的平方根,故说法正确;
    ④任何实数不是有理数就是无理数,故说法正确;
    ⑤两个无理数的和还是无理数,如 和 是错误的;
    ⑥无理数都是无限小数,故说法正确;
    故正确的是②③④⑥共4个;
    故选C.
    【点睛】
    本题考查了有理数的分类,数轴及平方根的概念,有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无限不循环小数,其中有开方开不尽的数,如 等,也有π这样的数.
    8、D
    【解析】
    根据题意可以求得P1,点P2,点P3的坐标,从而可以发现其中的变化的规律,从而可以求得P2018的坐标,本题得以解决.
    【详解】
    解:由题意可得,
    点P1(1,1),点P2(3,-1),点P3(5,1),
    ∴P2018的横坐标为:2×2018-1=4035,纵坐标为:-1,
    即P2018的坐标为(4035,-1),
    故选:D.
    【点睛】
    本题考查了点的坐标变化规律,解答本题的关键是发现各点的变化规律,求出相应的点的坐标.
    9、C
    【解析】
    从正面看几何体,确定出主视图即可.
    【详解】
    解:几何体的主视图为

    故选C.
    【点睛】
    本题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.
    10、A
    【解析】
    由解析式可知该函数在x=h时取得最小值1,x>h时,y随x的增大而增大;当x3,可得当x=3时,y取得最小值5,分别列出关于h的方程求解即可.
    【详解】
    解:∵x>h时,y随x的增大而增大,当x ∴①若h<1,当时,y随x的增大而增大,
    ∴当x=1时,y取得最小值5,
    可得:,
    解得:h=−1或h=3(舍),
    ∴h=−1;
    ②若h>3,当时,y随x的增大而减小,
    当x=3时,y取得最小值5,
    可得:,
    解得:h=5或h=1(舍),
    ∴h=5,
    ③若1≤h≤3时,当x=h时,y取得最小值为1,不是5,
    ∴此种情况不符合题意,舍去.
    综上所述,h的值为−1或5,
    故选:A.
    【点睛】
    本题主要考查二次函数的性质和最值,根据二次函数的性质和最值进行分类讨论是解题的关键.
    11、A
    【解析】
    有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可
    【详解】
    根据有理数比较大小的方法,可得
    ﹣4<﹣2<0<3
    ∴各数中,最小的数是﹣4
    故选:A
    【点睛】
    本题考查了有理数大小比较的方法,解题的关键要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小
    12、B
    【解析】
    如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点.
    【详解】
    解:如图,AB的中点即数轴的原点O.
    根据数轴可以得到点A表示的数是.
    故选:B.
    【点睛】
    此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点确定数轴的原点是解决本题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、2
    【解析】
    试题分析:设正六边形的中心是O,一边是AB,过O作OG⊥AB与G,在直角△OAG中,根据三角函数即可求得OA.
    解:如图所示,

    在Rt△AOG中,OG=,∠AOG=30°,
    ∴OA=OG÷cos 30°=÷=2;
    故答案为2.
    点睛:本题主要考查正多边形和圆的关系. 解题的关键在于利用正多边形的半径、边心距构造直角三角形并利用解直角三角形的知识求解.
    14、
    【解析】
    根据抛物线的解析式结合抛物线过点B、C,即可得出点C的横坐标,由菱形的性质可得出AD=AB=BC=1,再根据勾股定理可求出OB的长度,套用平行四边形的面积公式即可得出菱形ABCD的面积.
    【详解】
    抛物线的对称轴为x=-.
    ∵抛物线y=-x2-1x+c经过点B、C,且点B在y轴上,BC∥x轴,
    ∴点C的横坐标为-1.
    ∵四边形ABCD为菱形,
    ∴AB=BC=AD=1,
    ∴点D的坐标为(-2,0),OA=2.
    在Rt△ABC中,AB=1,OA=2,
    ∴OB==4,
    ∴S菱形ABCD=AD•OB=1×4=3.
    故答案为3.
    【点睛】
    本题考查了二次函数图象上点的坐标特征、二次函数的性质、菱形的性质以及平行四边形的面积,根据二次函数的性质、菱形的性质结合勾股定理求出AD=1、OB=4是解题的关键.
    15、①②④
    【解析】
    分析:∵四边形ABCD是正方形,∴AB=AD。
    ∵△AEF是等边三角形,∴AE=AF。
    ∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)。∴BE=DF。
    ∵BC=DC,∴BC﹣BE=CD﹣DF。∴CE=CF。∴①说法正确。
    ∵CE=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°。
    ∵∠AEF=60°,∴∠AEB=75°。∴②说法正确。
    如图,连接AC,交EF于G点,

    ∴AC⊥EF,且AC平分EF。
    ∵∠CAD≠∠DAF,∴DF≠FG。
    ∴BE+DF≠EF。∴③说法错误。
    ∵EF=2,∴CE=CF=。
    设正方形的边长为a,在Rt△ADF中,,解得,
    ∴。
    ∴。∴④说法正确。
    综上所述,正确的序号是①②④。
    16、y=2x+1
    【解析】
    分析:直接根据函数图象平移的法则进行解答即可.
    详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;
    故答案为y=2x+1.
    点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.
    17、1
    【解析】解:∵2m2﹣4mn+2n2=2(m﹣n)2,∴当m﹣n=4时,原式=2×42=1.故答案为:1.
    18、
    【解析】
    根据概率的概念直接求得.
    【详解】
    解:4÷6=.
    故答案为:.
    【点睛】
    本题用到的知识点为:概率=所求情况数与总情况数之比.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、 (1)π, 2π;(2)(n﹣2)π.
    【解析】
    (1)利用弧长公式和三角形和四边形的内角和公式代入计算;
    (2)利用多边形的内角和公式和弧长公式计算.
    【详解】
    (1)利用弧长公式可得
    =π,
    因为n1+n2+n3=180°.
    同理,四边形的==2π,
    因为四边形的内角和为360度;
    (2)n条弧==(n﹣2)π.
    【点睛】
    本题考查了多边形的内角和定理以及扇形的面积公式和弧长的计算公式,理解公式是关键.
    20、 (1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2)①;②手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.
    【解析】
    (1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;
    (2)①根据总利润=销售A型手机的利润+销售B型手机的利润即可列出函数关系式;
    ②根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;
    (3)根据题意,,,然后分①当时,②当时,③当时,三种情况进行讨论求解即可.
    【详解】
    解:(1)设每部型手机的销售利润为元,每部型手机的销售利润为元.
    根据题意,得,
    解得
    答:每部型手机的销售利润为元,每部型手机的销售利润为元.
    (2)①根据题意,得,即.
    ②根据题意,得,解得.
    ,,
    随的增大而减小.
    为正整数,
    当时,取最大值,.
    即手机店购进部型手机和部型手机的销售利润最大.
    (3)根据题意,得.
    即,.
    ①当时,随的增大而减小,
    当时,取最大值,即手机店购进部型手机和部型手机的销售利润最大;
    ②当时,,,即手机店购进型手机的数量为满足的整数时,获得利润相同;
    ③当时,,随的增大而增大,
    当时,取得最大值,即手机店购进部型手机和部型手机的销售利润最大.
    【点睛】
    本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性.
    21、(1)见解析(2)
    【解析】
    试题分析:(1)利用平行四边形的性质和菱形的性质即可判定四边形AECF是菱形;
    (2)连接EF交于点O,运用解直角三角形的知识点,可以求得AC与EF的长,再利用菱形的面积公式即可求得菱形AECF的面积.
    试题解析:(1)证明:∵四边形ABCD是平行四边形,
    ∴AD∥BC,AD=BC.
    在Rt△ABC中,∠BAC=90°,点E是BC边的中点,
    ∴AE=CE=BC.
    同理,AF=CF=AD.
    ∴AF=CE.
    ∴四边形AECF是平行四边形.
    ∴平行四边形AECF是菱形.
    (2)解:在Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,
    ∴AC=5,AB=.
    连接EF交于点O,
    ∴AC⊥EF于点O,点O是AC中点.
    ∴OE=.
    ∴EF=.
    ∴菱形AECF的面积是AC·EF=.

    考点:1.菱形的性质和面积;2.平行四边形的性质;3.解直角三角形.
    22、(1)y=x2+x﹣(2)存在,(﹣1﹣2,2)或(﹣1+2,2)(3)点F的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为 1
    【解析】
    (1)设抛物线解析式为y=ax2+bx+c,把(﹣3,0),(1,0),(0,)代入求出a、b、c的值即可;(2)根据抛物线解析式可知顶点P的坐标,由两个三角形的底相同可得要使两个三角形面积相等则高相等,根据P点坐标可知E点纵坐标,代入解析式求出x的值即可;(3)分别讨论AB为边、AB为对角线两种情况求出F点坐标并求出面积即可;
    【详解】
    (1)设抛物线解析式为y=ax2+bx+c,将(﹣3,0),(1,0),(0,)代入抛物线解析式得,
    解得:a=,b=1,c=﹣
    ∴抛物线解析式:y=x2+x﹣
    (2)存在.
    ∵y=x2+x﹣=(x+1)2﹣2
    ∴P点坐标为(﹣1,﹣2)
    ∵△ABP的面积等于△ABE的面积,
    ∴点E到AB的距离等于2,
    设E(a,2),
    ∴a2+a﹣=2
    解得a1=﹣1﹣2,a2=﹣1+2
    ∴符合条件的点E的坐标为(﹣1﹣2,2)或(﹣1+2,2)
    (3)∵点A(﹣3,0),点B(1,0),
    ∴AB=4
    若AB为边,且以A、B、P、F为顶点的四边形为平行四边形
    ∴AB∥PF,AB=PF=4
    ∵点P坐标(﹣1,﹣2)
    ∴点F坐标为(3,﹣2),(﹣5,﹣2)
    ∴平行四边形的面积=4×2=1
    若AB为对角线,以A、B、P、F为顶点的四边形为平行四边形
    ∴AB与PF互相平分
    设点F(x,y)且点A(﹣3,0),点B(1,0),点P(﹣1,﹣2)
    ∴ ,
    ∴x=﹣1,y=2
    ∴点F(﹣1,2)
    ∴平行四边形的面积=×4×4=1
    综上所述:点F的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为1.
    【点睛】
    本题考查待定系数法求二次函数解析式及二次函数的几何应用,分类讨论并熟练掌握数形结合的数学思想方法是解题关键.
    23、证明见解析.
    【解析】
    易证△DAC≌△CEF,即可得证.
    【详解】
    证明:∵∠DCF=∠E=90°,∴∠DCA+∠ECF=90°,∠CFE+∠ECF=90°,
    ∴∠DCA=∠CFE,在△DAC和△CEF中:,
    ∴△DAC≌△CEF(AAS),
    ∴AD=CE,AC=EF,
    ∴AE=AD+EF
    【点睛】
    此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定与性质.
    24、(1);(2)第45天时,当天销售利润最大,最大利润是6050元;(3)41.
    【解析】
    (1)根据单价乘以数量,可得利润,可得答案.
    (2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.
    (3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.
    【详解】
    (1)当1≤x<50时,,
    当50≤x≤90时,,
    综上所述:.
    (2)当1≤x<50时,二次函数开口下,二次函数对称轴为x=45,
    当x=45时,y最大=-2×452+180×45+2000=6050,
    当50≤x≤90时,y随x的增大而减小,
    当x=50时,y最大=6000,
    综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元.
    (3)解,结合函数自变量取值范围解得,
    解,结合函数自变量取值范围解得
    所以当20≤x≤60时,即共41天,每天销售利润不低于4800元.
    【点睛】
    本题主要考查了1.二次函数和一次函数的应用(销售问题);2.由实际问题列函数关系式;3. 二次函数和一次函数的性质;4.分类思想的应用.
    25、(1)见解析;(2)75﹣a.
    【解析】
    (1)连接CD,求出∠ADC=90°,根据切线长定理求出DE=EC,即可求出答案;
    (2)连接CD、OD、OE,求出扇形DOC的面积,分别求出△ODE和△OCE的面积,即可求出答案
    【详解】
    (1)证明:连接DC,

    ∵BC是⊙O直径,
    ∴∠BDC=90°,
    ∴∠ADC=90°,
    ∵∠C=90°,BC为直径,
    ∴AC切⊙O于C,
    ∵过点D作⊙O的切线DE交AC于点E,
    ∴DE=CE,
    ∴∠EDC=∠ECD,
    ∵∠ACB=∠ADC=90°,
    ∴∠A+∠ACD=90°,∠ADE+∠EDC=90°,
    ∴∠A=∠ADE;
    (2)解:连接CD、OD、OE,

    ∵DE=10,DE=CE,
    ∴CE=10,
    ∵∠A=∠ADE,
    ∴AE=DE=10,
    ∴AC=20,
    ∵∠ACB=90°,AB=25,
    ∴由勾股定理得:BC===15,
    ∴CO=OD=,
    ∵的长度是a,
    ∴扇形DOC的面积是×a×=a,
    ∴DE、EC和弧DC围成的部分的面积S=××10+×10﹣a=75﹣a.
    【点睛】
    本题考查了圆周角定理,切线的性质,切线长定理,等腰三角形的性质和判定,勾股定理,扇形的面积,三角形的面积等知识点,能综合运用知识点进行推理和计算是解此题的关键.
    26、(1)10%; (2)72; (3)5,见解析; (4)330.
    【解析】
    解:(1)根据题意得:
    D级的学生人数占全班人数的百分比是:
    1-20%-46%-24%=10%;
    (2)A级所在的扇形的圆心角度数是:20%×360°=72°;
    (3)∵A等人数为10人,所占比例为20%,
    ∴抽查的学生数=10÷20%=50(人),
    ∴D级的学生人数是50×10%=5(人),
    补图如下:

    (4)根据题意得:
    体育测试中A级和B级的学生人数之和是:500×(20%+46%)=330(名),
    答:体育测试中A级和B级的学生人数之和是330名.
    【点睛】
    本题考查统计的知识,要求考生会识别条形统计图和扇形统计图.
    27、小军的证明:见解析;小俊的证明:见解析;[变式探究]见解析;[结论运用]PG+PH的值为1;[迁移拓展](6+2)dm
    【解析】
    小军的证明:连接AP,利用面积法即可证得;
    小俊的证明:过点P作PG⊥CF,先证明四边形PDFG为矩形,再证明△PGC≌△CEP,即可得到答案;
    [变式探究]小军的证明思路:连接AP,根据S△ABC=S△ABP﹣S△ACP,即可得到答案;
    小俊的证明思路:过点C,作CG⊥DP,先证明四边形CFDG是矩形,再证明△CGP≌△CEP即可得到答案;
    [结论运用] 过点E作EQ⊥BC,先根据矩形的性质求出BF,根据翻折及勾股定理求出DC,证得四边形EQCD是矩形,得出BE=BF即可得到答案;
    [迁移拓展]延长AD,BC交于点F,作BH⊥AF,证明△ADE∽△BCE得到FA=FB,设DH=x,利用勾股定理求出x得到BH=6,再根据∠ADE=∠BCE=90°,且M,N分别为AE,BE的中点即可得到答案.
    【详解】
    小军的证明:
    连接AP,如图②

    ∵PD⊥AB,PE⊥AC,CF⊥AB,
    ∴S△ABC=S△ABP+S△ACP,
    ∴AB×CF=AB×PD+AC×PE,
    ∵AB=AC,
    ∴CF=PD+PE.
    小俊的证明:
    过点P作PG⊥CF,如图2,
    ∵PD⊥AB,CF⊥AB,PG⊥FC,
    ∴∠CFD=∠FDG=∠FGP=90°,
    ∴四边形PDFG为矩形,
    ∴DP=FG,∠DPG=90°,
    ∴∠CGP=90°,
    ∵PE⊥AC,
    ∴∠CEP=90°,
    ∴∠PGC=∠CEP,
    ∵∠BDP=∠DPG=90°,
    ∴PG∥AB,
    ∴∠GPC=∠B,
    ∵AB=AC,
    ∴∠B=∠ACB,
    ∴∠GPC=∠ECP,
    在△PGC和△CEP中

    ∴△PGC≌△CEP,
    ∴CG=PE,
    ∴CF=CG+FG=PE+PD;
    [变式探究]
    小军的证明思路:连接AP,如图③,

    ∵PD⊥AB,PE⊥AC,CF⊥AB,
    ∴S△ABC=S△ABP﹣S△ACP,
    ∴AB×CF=AB×PD﹣AC×PE,
    ∵AB=AC,
    ∴CF=PD﹣PE;
    小俊的证明思路:
    过点C,作CG⊥DP,如图③,
    ∵PD⊥AB,CF⊥AB,CG⊥DP,
    ∴∠CFD=∠FDG=∠DGC=90°,
    ∴CF=GD,∠DGC=90°,四边形CFDG是矩形,
    ∵PE⊥AC,
    ∴∠CEP=90°,
    ∴∠CGP=∠CEP,
    ∵CG⊥DP,AB⊥DP,
    ∴∠CGP=∠BDP=90°,
    ∴CG∥AB,
    ∴∠GCP=∠B,
    ∵AB=AC,
    ∴∠B=∠ACB,
    ∵∠ACB=∠PCE,
    ∴∠GCP=∠ECP,
    在△CGP和△CEP中,

    ∴△CGP≌△CEP,
    ∴PG=PE,
    ∴CF=DG=DP﹣PG=DP﹣PE.
    [结论运用]
    如图④

    过点E作EQ⊥BC,
    ∵四边形ABCD是矩形,
    ∴AD=BC,∠C=∠ADC=90°,
    ∵AD=8,CF=3,
    ∴BF=BC﹣CF=AD﹣CF=5,
    由折叠得DF=BF,∠BEF=∠DEF,
    ∴DF=5,
    ∵∠C=90°,
    ∴DC==1,
    ∵EQ⊥BC,∠C=∠ADC=90°,
    ∴∠EQC=90°=∠C=∠ADC,
    ∴四边形EQCD是矩形,
    ∴EQ=DC=1,
    ∵AD∥BC,
    ∴∠DEF=∠EFB,
    ∵∠BEF=∠DEF,
    ∴∠BEF=∠EFB,
    ∴BE=BF,
    由问题情景中的结论可得:PG+PH=EQ,
    ∴PG+PH=1.
    ∴PG+PH的值为1.
    [迁移拓展]
    延长AD,BC交于点F,作BH⊥AF,如图⑤,

    ∵AD×CE=DE×BC,
    ∴,
    ∵ED⊥AD,EC⊥CB,
    ∴∠ADE=∠BCE=90°,
    ∴△ADE∽△BCE,
    ∴∠A=∠CBE,
    ∴FA=FB,
    由问题情景中的结论可得:ED+EC=BH,
    设DH=x,
    ∴AH=AD+DH=3+x,
    ∵BH⊥AF,
    ∴∠BHA=90°,
    ∴BH2=BD2﹣DH2=AB2﹣AH2,
    ∵AB=2,AD=3,BD=,
    ∴()2﹣x2=(2)2﹣(3+x)2,
    ∴x=1,
    ∴BH2=BD2﹣DH2=37﹣1=36,
    ∴BH=6,
    ∴ED+EC=6,
    ∵∠ADE=∠BCE=90°,且M,N分别为AE,BE的中点,
    ∴DM=EM=AE,CN=EN=BE,
    ∴△DEM与△CEN的周长之和
    =DE+DM+EM+CN+EN+EC
    =DE+AE+BE+EC
    =DE+AB+EC
    =DE+EC+AB
    =6+2,
    ∴△DEM与△CEN的周长之和(6+2)dm.
    【点睛】
    此题是一道综合题,考查三角形全等的判定及性质,勾股定理,矩形的性质定理,三角形的相似的判定及性质定理,翻折的性质,根据题中小军和小俊的思路进行证明,故正确理解题意由此进行后面的证明是解题的关键.

    相关试卷

    江苏省东台市第四联盟市级名校2021-2022学年中考联考数学试卷含解析: 这是一份江苏省东台市第四联盟市级名校2021-2022学年中考联考数学试卷含解析,共24页。试卷主要包含了|–|的倒数是等内容,欢迎下载使用。

    江苏省东台市第六联盟市级名校2022年中考联考数学试卷含解析: 这是一份江苏省东台市第六联盟市级名校2022年中考联考数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,若x>y,则下列式子错误的是,函数的自变量x的取值范围是,如图,﹣3的相反数是等内容,欢迎下载使用。

    2022届江苏省东台市第七联盟重点中学中考联考数学试卷含解析: 这是一份2022届江苏省东台市第七联盟重点中学中考联考数学试卷含解析,共21页。试卷主要包含了下列计算正确的是,下列说法错误的是,不等式组的解集在数轴上表示为,计算等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map