|试卷下载
搜索
    上传资料 赚现金
    湖南省株洲市攸县2022年中考考前最后一卷数学试卷含解析
    立即下载
    加入资料篮
    湖南省株洲市攸县2022年中考考前最后一卷数学试卷含解析01
    湖南省株洲市攸县2022年中考考前最后一卷数学试卷含解析02
    湖南省株洲市攸县2022年中考考前最后一卷数学试卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖南省株洲市攸县2022年中考考前最后一卷数学试卷含解析

    展开
    这是一份湖南省株洲市攸县2022年中考考前最后一卷数学试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,下列运算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如果将抛物线向右平移1个单位,那么所得的抛物线的表达式是  
    A. B. C. D.
    2.关于x的方程x2﹣3x+k=0的一个根是2,则常数k的值为(  )
    A.1 B.2 C.﹣1 D.﹣2
    3.如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点H,连接DH,下列结论正确的是(  )
    ①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG:S△HBG=tan∠DAG ⑤线段DH的最小值是2﹣2

    A.①②⑤ B.①③④⑤ C.①②④⑤ D.①②③④
    4.小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d,把矿石完全浸没在水中,测出杯中水面上升了高度h,则小明的这块矿石体积是( )
    A. B. C. D.
    5.如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为( )

    A.1 B.2 C.3 D.4
    6.如图,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,则tan∠BCD的值为(  )

    A. B. C. D.
    7.PM2.5是指大气中直径小于或等于2.5μm(0.0000025m)的颗粒物,含有大量有毒、有害物质,也称为可入肺颗粒物,将25微米用科学记数法可表示为(  )米.
    A.25×10﹣7 B.2.5×10﹣6 C.0.25×10﹣5 D.2.5×10﹣5
    8.下列运算正确的是(   )
    A.a2·a3﹦a6  B.a3+ a3﹦a6  C.|-a2|﹦a2    D.(-a2)3﹦a6
    9.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是

    A.甲 B.乙
    C.丙 D.丁
    10.一个几何体的三视图如图所示,根据图示的数据计算出该几何体的表面积(  )

    A.65π B.90π C.25π D.85π
    二、填空题(共7小题,每小题3分,满分21分)
    11.将抛物线y=(x+m)2向右平移2个单位后,对称轴是y轴,那么m的值是_____.
    12.如图,AB为⊙O的弦,C为弦AB上一点,设AC=m,BC=n(m>n),将弦AB绕圆心O旋转一周,若线段BC扫过的面积为(m2﹣n2)π,则=______

    13.计算:(a2)2=_____.
    14.飞机着陆后滑行的距离S(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=60t﹣1.2t2,那么飞机着陆后滑行_____秒停下.
    15.如图,a∥b,∠1=40°,∠2=80°,则∠3=  度.

    16.如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升______cm.

    17.⊙O的半径为10cm,AB,CD是⊙O的两条弦,且AB∥CD,AB=16cm,CD=12cm.则AB与CD之间的距离是 cm.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.
    (1)求证:BC是∠ABE的平分线;
    (2)若DC=8,⊙O的半径OA=6,求CE的长.
    19.(5分)某校为了创建书香校远,计划进一批图书,经了解.文学书的单价比科普书的单价少20元,用800元购进的文学书本数与用1200元购进的科普书本数相等.文学书和科普书的单价分别是多少元?该校计划用不超过5000元的费用购进一批文学书和科普书,问购进60本文学书后最多还能购进多少本科普书?
    20.(8分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A处测得塔顶C的仰角为30°,向塔的方向移动60米后到达点B,再次测得塔顶C的仰角为60°,试通过计算求出文峰塔的高度CD.(结果保留两位小数)

    21.(10分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
    (1)求证:四边形DEBF是矩形;
    (2)若AF平分∠DAB,AE=3,BF=4,求▱ABCD的面积.

    22.(10分)九(3)班“2017年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.
    (1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,求小芳获奖的概率.
    (2)如果小芳、小明都有翻两张牌的机会.小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们获奖的机会相等吗?通过树状图分析说明理由.
    23.(12分)对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.
    (1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;
    (2)函数y=2x2-bx.
    ①若其不变长度为零,求b的值;
    ②若1≤b≤3,求其不变长度q的取值范围;
    (3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .

    24.(14分)如图,已知在中,,是的平分线.

    (1)作一个使它经过两点,且圆心在边上;(不写作法,保留作图痕迹)
    (2)判断直线与的位置关系,并说明理由.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    本题主要考查二次函数的解析式
    【详解】
    解:根据二次函数的解析式形式可得,设顶点坐标为(h,k),则二次函数的解析式为.由原抛物线解析式可得a=1,且原抛物线的顶点坐标为(0,0),向右平移1个单位后的顶点坐标为(1,0),故平移后的解析式为.
    故选D.
    【点睛】
    本题主要考查二次函数的顶点式,根据顶点的平移可得到二次函数平移后的解析式.
    2、B
    【解析】
    根据一元二次方程的解的定义,把x=2代入得4-6+k=0,然后解关于k的方程即可.
    【详解】
    把x=2代入得,4-6+k=0,
    解得k=2.
    故答案为:B.
    【点睛】
    本题主要考查了一元二次方程的解,掌握一元二次方程的定义,把已知代入方程,列出关于k的新方程,通过解新方程来求k的值是解题的关键.
    3、B
    【解析】
    首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.
    ∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,
    ∴△ABE≌△DCF,
    ∴∠ABE=∠DCF.
    ∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,
    ∴△ADG≌△CDG,
    ∴∠DAG=∠DCF,
    ∴∠ABE=∠DAG.
    ∵∠DAG+∠BAH=90°,
    ∴∠BAE+∠BAH=90°,
    ∴∠AHB=90°,
    ∴AG⊥BE,故③正确,
    同理可证:△AGB≌△CGB.
    ∵DF∥CB,
    ∴△CBG∽△FDG,
    ∴△ABG∽△FDG,故①正确.
    ∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,
    ∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正确.
    取AB的中点O,连接OD、OH.

    ∵正方形的边长为4,
    ∴AO=OH=×4=1,
    由勾股定理得,OD=,
    由三角形的三边关系得,O、D、H三点共线时,DH最小,
    DH最小=1-1.
    无法证明DH平分∠EHG,故②错误,
    故①③④⑤正确.
    故选B.
    【点睛】
    本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解直角三角形,解题的关键是掌握它们的性质进行解题.
    4、A
    【解析】
    圆柱体的底面积为:π×()2,
    ∴矿石的体积为:π×()2h= .
    故答案为.
    5、C
    【解析】
    本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC的面积与|k|的关系,列出等式求出k值.
    【详解】
    由题意得:E、M、D位于反比例函数图象上,

    则,
    过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|.
    又∵M为矩形ABCO对角线的交点,
    ∴S矩形ABCO=4S□ONMG=4|k|,
    ∵函数图象在第一象限,k>0,
    ∴.
    解得:k=1.
    故选C.
    【点睛】
    本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.
    6、D
    【解析】
    先求得∠A=∠BCD,然后根据锐角三角函数的概念求解即可.
    【详解】
    解:∵∠ACB=90°,AB=5,AC=4,
    ∴BC=3,
    在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.
    ∴∠A=∠BCD.
    ∴tan∠BCD=tanA==,
    故选D.
    【点睛】
    本题考查解直角三角形,三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.
    7、B
    【解析】
    由科学计数法的概念表示出0.0000025即可.
    【详解】
    0.0000025=2.5×10﹣6.
    故选B.
    【点睛】
    本题主要考查科学计数法,熟记相关概念是解题关键.
    8、C
    【解析】
    根据同底数幂相乘,底数不变指数相加;合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.
    【详解】
    a2·a3﹦a5,故A项错误;a3+ a3﹦2a3,故B项错误;a3+ a3﹦- a6,故D项错误,选C.
    【点睛】
    本题考查同底数幂加减乘除及乘方,解题的关键是清楚运算法则.
    9、D
    【解析】
    解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁.故选D.
    10、B
    【解析】
    根据三视图可判断该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,再利用勾股定理计算出母线长,然后求底面积与侧面积的和即可.
    【详解】
    由三视图可知该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,
    所以圆锥的母线长==13,
    所以圆锥的表面积=π×52+×2π×5×13=90π.
    故选B.
    【点睛】
    本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    根据平移规律“左加右减,上加下减”填空.
    【详解】
    解:将抛物线y=(x+m)1向右平移1个单位后,得到抛物线解析式为y=(x+m-1)1.其对称轴为:x=1-m=0,
    解得m=1.
    故答案是:1.
    【点睛】
    主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.
    12、
    【解析】
    先确定线段BC过的面积:圆环的面积,作辅助圆和弦心距OD,根据已知面积列等式可得:S=πOB2-πOC2=(m2-n2)π,则OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得结论.
    【详解】
    如图,连接OB、OC,以O为圆心,OC为半径画圆,

    则将弦AB绕圆心O旋转一周,线段BC扫过的面积为圆环的面积,
    即S=πOB2-πOC2=(m2-n2)π,
    OB2-OC2=m2-n2,
    ∵AC=m,BC=n(m>n),
    ∴AM=m+n,
    过O作OD⊥AB于D,
    ∴BD=AD=AB=,CD=AC-AD=m-=,
    由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,
    ∴m2-n2=mn,
    m2-mn-n2=0,
    m=,
    ∵m>0,n>0,
    ∴m=,
    ∴,
    故答案为.
    【点睛】
    此题主要考查了勾股定理,垂径定理,一元二次方程等知识,根据旋转的性质确定线段BC扫过的面积是解题的关键,是一道中等难度的题目.
    13、a1.
    【解析】
    根据幂的乘方法则进行计算即可.
    【详解】

    故答案为
    【点睛】
    考查幂的乘方,掌握运算法则是解题的关键.
    14、1
    【解析】
    飞机停下时,也就是滑行距离最远时,即在本题中需求出s最大时对应的t值.
    【详解】
    由题意,s=﹣1.2t2+60t=﹣1.2(t2﹣50t+61﹣61)=﹣1.2(t﹣1)2+750
    即当t=1秒时,飞机才能停下来.
    故答案为1.
    【点睛】
    本题考查了二次函数的应用.解题时,利用配方法求得t=2时,s取最大值.
    15、120
    【解析】
    如图,

    ∵a∥b,∠2=80°,
    ∴∠4=∠2=80°(两直线平行,同位角相等)
    ∴∠3=∠1+∠4=40°+80°=120°.
    故答案为120°.
    16、10或1
    【解析】
    分水位在圆心下以及圆心上两种情况,画出符合题意的图形进行求解即可得.
    【详解】
    如图,作半径于C,连接OB,

    由垂径定理得:=AB=×60=30cm,
    在中,,
    当水位上升到圆心以下时  水面宽80cm时,
    则,
    水面上升的高度为:;
    当水位上升到圆心以上时,水面上升的高度为:,
    综上可得,水面上升的高度为30cm或1cm,
    故答案为:10或1.
    【点睛】
    本题考查了垂径定理的应用,掌握垂径定理、灵活运用分类讨论的思想是解题的关键.
    17、2或14
    【解析】
    分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.
    【详解】
    ①当弦AB和CD在圆心同侧时,如图,

    ∵AB=16cm,CD=12cm,
    ∴AE=8cm,CF=6cm,
    ∵OA=OC=10cm,
    ∴EO=6cm,OF=8cm,
    ∴EF=OF−OE=2cm;
    ②当弦AB和CD在圆心异侧时,如图,

    ∵AB=16cm,CD=12cm,
    ∴AF=8cm,CE=6cm,
    ∵OA=OC=10cm,
    ∴OF=6cm,OE=8cm,
    ∴EF=OF+OE=14cm.
    ∴AB与CD之间的距离为14cm或2cm.
    故答案为:2或14.

    三、解答题(共7小题,满分69分)
    18、(1)证明见解析;(2)4.1.
    【解析】
    试题分析:(1)由BE∥CO,推出∠OCB=∠CBE,由OC=OB,推出∠OCB=∠OBC,可得∠CBE=∠CBO;
    (2)在Rt△CDO中,求出OD,由OC∥BE,可得,由此即可解决问题;
    试题解析:(1)证明:∵DE是切线,∴OC⊥DE,∵BE∥CO,∴∠OCB=∠CBE,∵OC=OB,∴∠OCB=∠OBC,∴∠CBE=∠CBO,∴BC平分∠ABE.
    (2)在Rt△CDO中,∵DC=1,OC=0A=6,∴OD==10,∵OC∥BE,∴,∴,∴EC=4.1.
    考点:切线的性质.
    19、(1)文学书的单价为40元/本,科普书的单价为1元/本;(2)购进1本文学书后最多还能购进2本科普书.
    【解析】
    (1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,根据数量=总价÷单价结合用800元购进的文学书本数与用1200元购进的科普书本数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)设购进m本科普书,根据总价=文学书的单价×购进本数+科普书的单价×购进本数结合总价不超过5000元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.
    【详解】
    解:(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,
    依题意,得:,
    解得:x=40,
    经检验,x=40是原分式方程的解,且符合题意,
    ∴x+20=1.
    答:文学书的单价为40元/本,科普书的单价为1元/本.
    (2)设购进m本科普书,
    依题意,得:40×1+1m≤5000,
    解得:m≤.
    ∵m为整数,
    ∴m的最大值为2.
    答:购进1本文学书后最多还能购进2本科普书.
    【点睛】
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
    20、51.96米.
    【解析】
    先根据三角形外角的性质得出∠ACB=30°,进而得出AB=BC=1,在Rt△BDC中,,即可求出CD的长.
    【详解】
    解:∵∠CBD=1°,∠CAB=30°,
    ∴∠ACB=30°.
    ∴AB=BC=1.
    在Rt△BDC中,

    ∴(米).
    答:文峰塔的高度CD约为51.96米.
    【点睛】
    本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.
    21、(1)证明见解析(2)3
    【解析】
    试题分析:(1)根据平行四边形的性质,可证DF∥EB,然后根据一组对边平行且相等的四边形为平行四边形可证四边形DEBF是平行四边形,然后根据有一个角是直角的平行四边形是矩形可证;
    (2)根据(1)可知DE=BF,然后根据勾股定理可求AD的长,然后根据角平分线的性质和平行线的性质可求得DF=AD,然后可求CD的长,最后可用平行四边形的面积公式可求解.
    试题解析:(1)∵四边形ABCD是平行四边形,
    ∴DC∥AB,即DF∥EB.
    又∵DF=BE,
    ∴四边形DEBF是平行四边形.
    ∵DE⊥AB,
    ∴∠EDB=90°.
    ∴四边形DEBF是矩形.
    (2)∵四边形DEBF是矩形,
    ∴DE=BF=4,BD=DF.
    ∵DE⊥AB,
    ∴AD===1.
    ∵DC∥AB,
    ∴∠DFA=∠FAB.
    ∵AF平分∠DAB,
    ∴∠DAF=∠FAB.
    ∴∠DAF=∠DFA.
    ∴DF=AD=1.
    ∴BE=1.
    ∴AB=AE+BE=3+1=2.
    ∴S□ABCD=AB·BF=2×4=3.
    22、(1);(2)他们获奖机会不相等,理由见解析.
    【解析】
    (1)根据正面有2张笑脸、2张哭脸,直接利用概率公式求解即可求得答案;(2)根据题意分别列出表格,然后由表格即可求得所有等可能的结果与获奖的情况,再利用概率公式求解即可求得他们获奖的概率.
    【详解】
    (1)∵有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,
    ∴获奖的概率是;
    故答案为;
    (2)他们获奖机会不相等,理由如下:
    小芳:

    笑1
    笑2
    哭1
    哭2
    笑1
    笑1,笑1
    笑2,笑1
    哭1,笑1
    哭2,笑1
    笑2
    笑1,笑2
    笑2,笑2
    哭1,笑2
    哭2,笑2
    哭1
    笑1,哭1
    笑2,哭1
    哭1,哭1
    哭2,哭1
    哭2
    笑1,哭2
    笑2,哭2
    哭1,哭2
    哭2,哭2
    ∵共有16种等可能的结果,翻开的两张纸牌中只要出现笑脸的有12种情况,
    ∴P(小芳获奖)=;
    小明:

    笑1
    笑2
    哭1
    哭2
    笑1

    笑2,笑1
    哭1,笑1
    哭2,笑1
    笑2
    笑1,笑2

    哭1,笑2
    哭2,笑2
    哭1
    笑1,哭1
    笑2,哭1

    哭2,哭1
    哭2
    笑1,哭2
    笑2,哭2
    哭1,哭2

    ∵共有12种等可能的结果,翻开的两张纸牌中只要出现笑脸的有10种情况,
    ∴P(小明获奖)=,
    ∵P(小芳获奖)≠P(小明获奖),
    ∴他们获奖的机会不相等.
    【点睛】
    本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
    23、详见解析.
    【解析】
    试题分析:(1)根据定义分别求解即可求得答案;
    (1)①首先由函数y=1x1﹣bx=x,求得x(1x﹣b﹣1)=2,然后由其不变长度为零,求得答案;
    ②由①,利用1≤b≤3,可求得其不变长度q的取值范围;
    (3)由记函数y=x1﹣1x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G1,可得函数G的图象关于x=m对称,然后根据定义分别求得函数的不变值,再分类讨论即可求得答案.
    试题解析:解:(1)∵函数y=x﹣1,令y=x,则x﹣1=x,无解;
    ∴函数y=x﹣1没有不变值;
    ∵y=x-1 =,令y=x,则,解得:x=±1,∴函数的不变值为±1,q=1﹣(﹣1)=1.∵函数y=x1,令y=x,则x=x1,解得:x1=2,x1=1,∴函数y=x1的不变值为:2或1,q=1﹣2=1;
    (1)①函数y=1x1﹣bx,令y=x,则x=1x1﹣bx,整理得:x(1x﹣b﹣1)=2.∵q=2,∴x=2且1x﹣b﹣1=2,解得:b=﹣1;
    ②由①知:x(1x﹣b﹣1)=2,∴x=2或1x﹣b﹣1=2,解得:x1=2,x1=.∵1≤b≤3,∴1≤x1≤1,∴1﹣2≤q≤1﹣2,∴1≤q≤1;
    (3)∵记函数y=x1﹣1x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G1,∴函数G的图象关于x=m对称,∴G:y= .∵当x1﹣1x=x时,x3=2,x4=3;
    当(1m﹣x)1﹣1(1m﹣x)=x时,△=1+8m,当△<2,即m<﹣时,q=x4﹣x3=3;
    当△≥2,即m≥﹣时,x5=,x6=.
    ①当﹣≤m≤2时,x3=2,x4=3,∴x6<2,∴x4﹣x6>3(不符合题意,舍去);
    ②∵当x5=x4时,m=1,当x6=x3时,m=3;
    当2<m<1时,x3=2(舍去),x4=3,此时2<x5<x4,x6<2,q=x4﹣x6>3(舍去);
    当1≤m≤3时,x3=2(舍去),x4=3,此时2<x5<x4,x6>2,q=x4﹣x6<3;
    当m>3时,x3=2(舍去),x4=3(舍去),此时x5>3,x6<2,q=x5﹣x6>3(舍去);
    综上所述:m的取值范围为1≤m≤3或m<﹣.
    点睛:本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.注意掌握分类讨论思想的应用是解答此题的关键.
    24、(1)见解析;(2)与相切,理由见解析.
    【解析】
    (1)作出AD的垂直平分线,交AB于点O,进而利用AO为半径求出即可;
    (2)利用半径相等结合角平分线的性质得出OD∥AC,进而求出OD⊥BC,进而得出答案.
    【详解】
    (1)①分别以为圆心,大于的长为半径作弧,两弧相交于点和,
    ②作直线,与相交于点,
    ③以为圆心,为半径作圆,如图即为所作;

    (2)与相切,理由如下:
    连接OD,
    为半径,

    是等腰三角形,

    平分,






    为半径,
    与相切.
    【点睛】
    本题主要考查了切线的判定以及线段垂直平分线的作法与性质等知识,掌握切线的判定方法是解题关键.

    相关试卷

    湖南省永州市2022年中考考前最后一卷数学试卷含解析: 这是一份湖南省永州市2022年中考考前最后一卷数学试卷含解析,共15页。试卷主要包含了考生要认真填写考场号和座位序号,已知抛物线y=x2-2mx-4,一元二次方程=0的两个根是等内容,欢迎下载使用。

    2022年湖南省双牌县中考考前最后一卷数学试卷含解析: 这是一份2022年湖南省双牌县中考考前最后一卷数学试卷含解析,共22页。试卷主要包含了的值是,如图,,则的度数为等内容,欢迎下载使用。

    2022年湖南省中考数学考前最后一卷含解析: 这是一份2022年湖南省中考数学考前最后一卷含解析,共22页。试卷主要包含了方程x2﹣3x+2=0的解是,计算的结果为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map