|试卷下载
搜索
    上传资料 赚现金
    黑龙江省大庆市杜尔伯特县重点达标名校2022年毕业升学考试模拟卷数学卷含解析
    立即下载
    加入资料篮
    黑龙江省大庆市杜尔伯特县重点达标名校2022年毕业升学考试模拟卷数学卷含解析01
    黑龙江省大庆市杜尔伯特县重点达标名校2022年毕业升学考试模拟卷数学卷含解析02
    黑龙江省大庆市杜尔伯特县重点达标名校2022年毕业升学考试模拟卷数学卷含解析03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    黑龙江省大庆市杜尔伯特县重点达标名校2022年毕业升学考试模拟卷数学卷含解析

    展开
    这是一份黑龙江省大庆市杜尔伯特县重点达标名校2022年毕业升学考试模拟卷数学卷含解析,共27页。试卷主要包含了考生要认真填写考场号和座位序号,内角和为540°的多边形是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,的三边的长分别为20,30,40,点O是三条角平分线的交点,则等于(   )

    A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶5
    2.如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(n)个图形中面积为1的正方形的个数为(  )

    A. B. C. D.
    3.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为( )
    A. B. C. D.
    4.如图,已知点A、B、C、D在⊙O上,圆心O在∠D内部,四边形ABCO为平行四边形,则∠DAO与∠DCO的度数和是(  )

    A.60° B.45° C.35° D.30°
    5.如图是由5个大小相同的正方体组成的几何体,则该几何体的左视图是(  )

    A. B.
    C. D.
    6.在下列条件中,能够判定一个四边形是平行四边形的是( )
    A.一组对边平行,另一组对边相等
    B.一组对边相等,一组对角相等
    C.一组对边平行,一条对角线平分另一条对角线
    D.一组对边相等,一条对角线平分另一条对角线
    7.如图,用一个半径为6cm的定滑轮带动重物上升,假设绳索(粗细不计)与滑轮之间没有滑动,绳索端点G向下移动了3πcm,则滑轮上的点F旋转了( )

    A.60° B.90° C.120° D.45°
    8.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:

    下列说法正确的是( )
    A.这10名同学体育成绩的中位数为38分
    B.这10名同学体育成绩的平均数为38分
    C.这10名同学体育成绩的众数为39分
    D.这10名同学体育成绩的方差为2
    9.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是(   )

    A. B. C. D.
    10.内角和为540°的多边形是( )
    A. B. C. D.
    11.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是(  )
    A.抛物线开口向下
    B.抛物线与x轴的交点为(﹣1,0),(3,0)
    C.当x=1时,y有最大值为0
    D.抛物线的对称轴是直线x=
    12.下列各数:1.414,,﹣,0,其中是无理数的为( )
    A.1.414 B. C.﹣ D.0
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为 .

    14.将点P(﹣1,3)绕原点顺时针旋转180°后坐标变为_____.
    15.在△ABC中,点D在边BC上,且BD:DC=1:2,如果设=, =,那么等于__(结果用、的线性组合表示).
    16.已知一组数据x1,x2,x3,x4,x5的平均数是3,则另一组新数据x1+1,x2+2,x3+3,x4+4,x5+5的平均数是_____.
    17.袋中装有红、绿各一个小球,随机摸出1个小球后放回,再随机摸出一个,则第一次摸到红球,第二次摸到绿球的概率是_____.
    18.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的四边形,AB∥CD,CD⊥BC于C,且AB、BC、CD边长分别为2,4,3,则原直角三角形纸片的斜边长是_______.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)雾霾天气严重影响市民的生活质量。在今年寒假期间,某校九年级一班的综合实践小组学生对“雾霾天气的主要成因”随机调查了所在城市部分市民,并对调查结果进行了整理,绘制了下图所示的不完整的统计图表:
    组别
    雾霾天气的主要成因
    百分比
    A
    工业污染
    45%
    B
    汽车尾气排放

    C
    炉烟气排放
    15%
    D
    其他(滥砍滥伐等)


    请根据统计图表回答下列问题:本次被调查的市民共有多少人?并求和的值;请补全条形统计图,并计算扇形统计图中扇形区域所对应的圆心角的度数;若该市有100万人口,请估计市民认为“工业污染和汽车尾气排放是雾霾天气主要成因”的人数.
    20.(6分)已知,△ABC中,∠A=68°,以AB为直径的⊙O与AC,BC的交点分别为D,E
    (Ⅰ)如图①,求∠CED的大小;
    (Ⅱ)如图②,当DE=BE时,求∠C的大小.

    21.(6分)如图 1,在平面直角坐标系中,O 是坐标原点,长方形 OACB 的顶点 A、B 分别在 x 轴与 y 轴上,已知 OA=6,OB=1.点 D 为 y 轴上一点,其坐标为(0,2), 点 P 从点 A 出发以每秒 2 个单位的速度沿线段 AC﹣CB 的方向运动,当点 P 与点 B 重合 时停止运动,运动时间为 t 秒.
    (1)当点 P 经过点 C 时,求直线 DP 的函数解析式;
    (2)如图②,把长方形沿着 OP 折叠,点 B 的对应点 B′恰好落在 AC 边上,求点 P 的坐标.
    (3)点 P 在运动过程中是否存在使△BDP 为等腰三角形?若存在,请求出点 P 的坐标;若 不存在,请说明理由.

    22.(8分)如图,在中,,点是上一点.尺规作图:作,使与、都相切.(不写作法与证明,保留作图痕迹)若与相切于点D,与的另一个交点为点,连接、,求证:.

    23.(8分)某水果批发市场香蕉的价格如下表
    购买香蕉数(千克)
    不超过20千克
    20千克以上但不超过40千克
    40千克以上
    每千克的价格
    6元
    5元
    4元
    张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?
    24.(10分)如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
    (1)求一次函数y=kx+b和y=的表达式;
    (2)已知点C在x轴上,且△ABC的面积是8,求此时点C的坐标;
    (3)反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向右平移3个单位长度,得曲线C2,则C1平移至C2处所扫过的面积是_________.(直接写出答案)

    25.(10分)如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE=AD,∠EAD=90°,CE交AB于点F,CD=DF.
    (1)∠CAD=______度;
    (2)求∠CDF的度数;
    (3)用等式表示线段CD和CE之间的数量关系,并证明.

    26.(12分)先化简,再求值:,其中a为不等式组的整数解.
    27.(12分)图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2、当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开、已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、设AP=x分米.
    (1)求x的取值范围;
    (2)若∠CPN=60°,求x的值;
    (3)设阳光直射下,伞下的阴影(假定为圆面)面积为y,求y关于x的关系式(结果保留π).




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,根据角平分线的性质得到OD=OE=OF,根据三角形的面积公式计算即可.
    【详解】
    作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,

    ∵三条角平分线交于点O,OF⊥AB,OE⊥AC,OD⊥BC,
    ∴OD=OE=OF,
    ∴S△ABO:S△BCO:S△CAO=AB:BC:CA=20:30:40=2:3:4,
    故选C.
    【点睛】
    考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
    2、C
    【解析】
    由图形可知:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=.
    【详解】
    第(1)个图形中面积为1的正方形有2个,
    第(2)个图形中面积为1的图象有2+3=5个,
    第(3)个图形中面积为1的正方形有2+3+4=9个,
    …,
    按此规律,
    第n个图形中面积为1的正方形有2+3+4+…+(n+1)= 个.
    【点睛】
    本题考查了规律的知识点,解题的关键是根据图形的变化找出规律.
    3、D
    【解析】
    分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.
    详解:设乘公交车平均每小时走x千米,根据题意可列方程为:

    故选D.
    点睛:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,列出方程即可.
    4、A
    【解析】
    试题解析:连接OD,

    ∵四边形ABCO为平行四边形,
    ∴∠B=∠AOC,
    ∵点A. B. C.D在⊙O上,

    由圆周角定理得,

    解得,
    ∵OA=OD,OD=OC,
    ∴∠DAO=∠ODA,∠ODC=∠DCO,

    故选A.
    点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.
    5、B
    【解析】
    找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.
    【详解】
    解:从左面看易得下面一层有2个正方形,上面一层左边有1个正方形.
    故选:B.
    【点睛】
    本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
    6、C
    【解析】
    A、错误.这个四边形有可能是等腰梯形.
    B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.
    C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.
    D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.
    故选C.
    7、B
    【解析】
    由弧长的计算公式可得答案.
    【详解】
    解:由圆弧长计算公式,将l=3π代入,
    可得n =90,
    故选B.
    【点睛】
    本题主要考查圆弧长计算公式,牢记并运用公式是解题的关键.
    8、C
    【解析】
    试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;
    第5和第6名同学的成绩的平均值为中位数,中位数为:=39;
    平均数==38.4
    方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;
    ∴选项A,B、D错误;
    故选C.
    考点:方差;加权平均数;中位数;众数.
    9、D
    【解析】
    根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.
    【详解】
    cosα=.
    故选D.
    【点睛】
    熟悉掌握锐角三角函数的定义是关键.
    10、C
    【解析】
    试题分析:设它是n边形,根据题意得,(n﹣2)•180°=140°,解得n=1.故选C.
    考点:多边形内角与外角.
    11、D
    【解析】
    A、由a=1>0,可得出抛物线开口向上,A选项错误;
    B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;
    C、由抛物线开口向上,可得出y无最大值,C选项错误;
    D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-,D选项正确.
    综上即可得出结论.
    【详解】
    解:A、∵a=1>0,
    ∴抛物线开口向上,A选项错误;
    B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),
    ∴c=1,
    ∴抛物线的解析式为y=x1-3x+1.
    当y=0时,有x1-3x+1=0,
    解得:x1=1,x1=1,
    ∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;
    C、∵抛物线开口向上,
    ∴y无最大值,C选项错误;
    D、∵抛物线的解析式为y=x1-3x+1,
    ∴抛物线的对称轴为直线x=-=-=,D选项正确.
    故选D.
    【点睛】
    本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.
    12、B
    【解析】
    试题分析:根据无理数的定义可得是无理数.故答案选B.
    考点:无理数的定义.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1.
    【解析】
    ∵AB=5,AD=12,
    ∴根据矩形的性质和勾股定理,得AC=13.
    ∵BO为Rt△ABC斜边上的中线
    ∴BO=6.5
    ∵O是AC的中点,M是AD的中点,
    ∴OM是△ACD的中位线
    ∴OM=2.5
    ∴四边形ABOM的周长为:6.5+2.5+6+5=1
    故答案为1
    14、(1,﹣3)
    【解析】
    画出平面直角坐标系,然后作出点P绕原点O顺时针旋转180°的点P′的位置,再根据平面直角坐标系写出坐标即可.
    【详解】
    如图所示:

    点P(-1,3)绕原点O顺时针旋转180°后的对应点P′的坐标为(1,-3).
    故答案是:(1,-3).
    【点睛】
    考查了坐标与图形变化-旋转,作出图形,利用数形结合的思想求解更简便,形象直观.
    15、
    【解析】
    根据三角形法则求出即可解决问题;
    【详解】
    如图,

    ∵=, =,
    ∴=+=-,
    ∵BD=BC,
    ∴=.
    故答案为.
    【点睛】
    本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.
    16、1
    【解析】
    根据平均数的性质知,要求x1+1,x2+2,x3+3,x4+4、x5+5的平均数,只要把数x1、x2、x3、x4、x5的和表示出即可.
    【详解】
    ∵数据x1,x2,x3,x4,x5的平均数是3,
    ∴x1+x2+x3+x4+x5=15,
    则新数据的平均数为=1,
    故答案为:1.
    【点睛】
    本题考查的是样本平均数的求法.解决本题的关键是用一组数据的平均数表示另一组数据的平均数.
    17、
    【解析】
    解:列表如下:

    所有等可能的情况有4种,所以第一次摸到红球,第二次摸到绿球的概率=.故答案为.
    18、4或1
    【解析】
    先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.
    【详解】
    ①如图:因为AC==2,
    点A是斜边EF的中点,
    所以EF=2AC=4,

    ②如图:
    因为BD==5,
    点D是斜边EF的中点,
    所以EF=2BD=1,

    综上所述,原直角三角形纸片的斜边长是4或1,
    故答案是:4或1.
    【点睛】
    此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)200人,;(2)见解析,;(3)75万人.
    【解析】
    (1)用A类的人数除以所占的百分比求出被调查的市民数,再用B类的人数除以总人数得出B类所占的百分比m,继而求出n的值即可;
    (2)求出C、D两组人数,从而可补全条形统计图,用360度乘以n即可得扇形区域所对应的圆心角的度数;
    (3)用该市的总人数乘以持有A、B两类所占的百分比的和即可.
    【详解】
    (1)本次被调查的市民共有:(人),
    ∴,;
    (2)组的人数是(人)、组的人数是(人),
    ∴;
    补全的条形统计图如下图所示:

    扇形区域所对应的圆心角的度数为:

    (3)(万),
    ∴若该市有100万人口,市民认为“工业污染和汽车尾气排放是雾霾天气主要成因”的人数约为75万人.
    【点睛】
    本题考查了条形统计图、扇形统计图、统计表,读懂图形,找出必要的信息是解题的关键.
    20、(Ⅰ)68°(Ⅱ)56°
    【解析】
    (1)圆内接四边形的一个外角等于它的内对角,利用圆内接四边形的性质证明∠CED=∠A即可,(2)连接AE,在Rt△AEC中,先根据同圆中,相等的弦所对弧相等,再根据同圆中,相等的弧所对圆周角相等, 求出∠EAC,最后根据直径所对圆周是直角,利用直角三角形两锐角互余即可解决问题.
    【详解】
    (Ⅰ)∵四边形ABED 圆内接四边形,
    ∴∠A+∠DEB=180°,
    ∵∠CED+∠DEB=180°,
    ∴∠CED=∠A,
    ∵∠A=68°,
    ∴∠CED=68°.
    (Ⅱ)连接AE.
    ∵DE=BD,
    ∴,
    ∴∠DAE=∠EAB=∠CAB=34°,
    ∵AB是直径,
    ∴∠AEB=90°,
    ∴∠AEC=90°,
    ∴∠C=90°﹣∠DAE=90°﹣34°=56°

    【点睛】
    本题主要考查圆周角定理、直径的性质、圆内接四边形的性质等知识,解决本题的关键是灵活运用所学知识解决问题.
    21、(1)y=x+2;(2)y=x+2;(2)①S=﹣2t+16,②点P的坐标是(,1);(3)存在,满足题意的P坐标为(6,6)或(6,2+2)或(6,1﹣2).
    【解析】
    分析:(1)设直线DP解析式为y=kx+b,将D与B坐标代入求出k与b的值,即可确定出解析式;
    (2)①当P在AC段时,三角形ODP底OD与高为固定值,求出此时面积;当P在BC段时,底边OD为固定值,表示出高,即可列出S与t的关系式;
    ②设P(m,1),则PB=PB′=m,根据勾股定理求出m的值,求出此时P坐标即可;
    (3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可.
    详解:(1)如图1,

    ∵OA=6,OB=1,四边形OACB为长方形,
    ∴C(6,1).
    设此时直线DP解析式为y=kx+b,
    把(0,2),C(6,1)分别代入,得
    ,解得
    则此时直线DP解析式为y=x+2;
    (2)①当点P在线段AC上时,OD=2,高为6,S=6;
    当点P在线段BC上时,OD=2,高为6+1﹣2t=16﹣2t,S=×2×(16﹣2t)=﹣2t+16;
    ②设P(m,1),则PB=PB′=m,如图2,

    ∵OB′=OB=1,OA=6,
    ∴AB′==8,
    ∴B′C=1﹣8=2,
    ∵PC=6﹣m,
    ∴m2=22+(6﹣m)2,解得m=
    则此时点P的坐标是(,1);
    (3)存在,理由为:
    若△BDP为等腰三角形,分三种情况考虑:如图3,

    ①当BD=BP1=OB﹣OD=1﹣2=8,
    在Rt△BCP1中,BP1=8,BC=6,
    根据勾股定理得:CP1==2,
    ∴AP1=1﹣2,即P1(6,1﹣2);
    ②当BP2=DP2时,此时P2(6,6);
    ③当DB=DP3=8时,
    在Rt△DEP3中,DE=6,
    根据勾股定理得:P3E==2,
    ∴AP3=AE+EP3=2+2,即P3(6,2+2),
    综上,满足题意的P坐标为(6,6)或(6,2+2)或(6,1﹣2).
    点睛:此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键.
    22、(1)详见解析;(2)详见解析.
    【解析】
    (1)利用角平分线的性质作出∠BAC的角平分线,利用角平分线上的点到角的两边距离相等得出O点位置,进而得出答案.
    (2)根据切线的性质,圆周角的性质,由相似判定可证△CDB∽△DEB,再根据相似三角形的性质即可求解.
    【详解】
    解:(1)如图,及为所求.

    (2)连接.
    ∵是的切线,
    ∴,
    ∴,
    即,
    ∵是直径,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,

    ∴∽

    ∴.
    【点睛】
    本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作是解决此类题目的关键.
    23、第一次买14千克香蕉,第二次买36千克香蕉
    【解析】
    本题两个等量关系为:第一次买的千克数+第二次买的千克数=50;第一次出的钱数+第二次出的钱数=1.对张强买的香蕉的千克数,应分情况讨论:①当0<x≤20,y≤40;②当0<x≤20,y>40③当20<x<3时,则3<y<2.
    【详解】
    设张强第一次购买香蕉xkg,第二次购买香蕉ykg,由题意可得0<x<3.
    则①当0<x≤20,y≤40,则题意可得

    解得.
    ②当0<x≤20,y>40时,由题意可得

    解得.(不合题意,舍去)
    ③当20<x<3时,则3<y<2,此时张强用去的款项为
    5x+5y=5(x+y)=5×50=30<1(不合题意,舍去);
    ④当20<x≤40 y>40时,总质量将大于60kg,不符合题意,
    答:张强第一次购买香蕉14kg,第二次购买香蕉36kg.
    【点睛】
    本题主要考查学生分类讨论的思想.找到两个基本的等量关系后,应根据讨论的千克数找到相应的价格进行作答.
    24、(1),;(2)点C的坐标为或;(3)2.
    【解析】
    试题分析:(1)由点A的坐标利用反比例函数图象上点的坐标特征即可求出a值,从而得出反比例函数解析式;由勾股定理得出OA的长度从而得出点B的坐标,由点A、B的坐标利用待定系数法即可求出直线AB的解析式;
    (2)设点C的坐标为(m,0),令直线AB与x轴的交点为D,根据三角形的面积公式结合△ABC的面积是8,可得出关于m的含绝对值符号的一元一次方程,解方程即可得出m值,从而得出点C的坐标;
    (3)设点E的横坐标为1,点F的横坐标为6,点M、N分别对应点E、F,根据反比例函数解析式以及平移的性质找出点E、F、M、N的坐标,根据EM∥FN,且EM=FN,可得出四边形EMNF为平行四边形,再根据平行四边形的面积公式求出平行四边形EMNF的面积S,根据平移的性质即可得出C1平移至C2处所扫过的面积正好为S.
    试题解析:
    (1)∵点A(4,3)在反比例函数y=的图象上,
    ∴a=4×3=12,
    ∴反比例函数解析式为y=;
    ∵OA==1,OA=OB,点B在y轴负半轴上,
    ∴点B(0,﹣1).
    把点A(4,3)、B(0,﹣1)代入y=kx+b中,
    得: ,解得: ,
    ∴一次函数的解析式为y=2x﹣1.
    (2)设点C的坐标为(m,0),令直线AB与x轴的交点为D,如图1所示.

    令y=2x﹣1中y=0,则x=,
    ∴D(,0),
    ∴S△ABC=CD•(yA﹣yB)=|m﹣|×[3﹣(﹣1)]=8,
    解得:m=或m=.
    故当△ABC的面积是8时,点C的坐标为(,0)或(,0).
    (3)设点E的横坐标为1,点F的横坐标为6,点M、N分别对应点E、F,如图2所示.

    令y=中x=1,则y=12,
    ∴E(1,12),;
    令y=中x=4,则y=3,
    ∴F(4,3),
    ∵EM∥FN,且EM=FN,
    ∴四边形EMNF为平行四边形,
    ∴S=EM•(yE﹣yF)=3×(12﹣3)=2.
    C1平移至C2处所扫过的面积正好为平行四边形EMNF的面积.
    故答案为2.
    【点睛】运用了反比例函数图象上点的坐标特征、待定系数法求函数解析式、三角形的面积以及平行四边形的面积,解题的关键是:(1)利用待定系数法求出函数解析式;(2)找出关于m的含绝对值符号的一元一次方程;(3)求出平行四边形EMNF的面积.本题属于中档题,难度不小,解决(3)时,巧妙的借助平行四边的面积公式求出C1平移至C2处所扫过的面积,此处要注意数形结合的重要性.
    25、(1)45;(2)90°;(3)见解析.
    【解析】
    (1)根据等腰三角形三线合一可得结论;
    (2)连接DB,先证明△BAD≌△CAD,得BD=CD=DF,则∠DBA=∠DFB=∠DCA,根据四边形内角和与平角的定义可得∠BAC+∠CDF=180°,所以∠CDF=90°;
    (3)证明△EAF≌△DAF,得DF=EF,由②可知,可得结论.
    【详解】
    (1)解:∵AB=AC,M是BC的中点,
    ∴AM⊥BC,∠BAD=∠CAD,
    ∵∠BAC=90°,
    ∴∠CAD=45°,
    故答案为:45
    (2)解:如图,连接DB.
    ∵AB=AC,∠BAC=90°,M是BC的中点,
    ∴∠BAD=∠CAD=45°.
    ∴△BAD≌△CAD.
    ∴∠DBA=∠DCA,BD=CD.
    ∵CD=DF,
    ∴BD=DF.
    ∴∠DBA=∠DFB=∠DCA.
    ∵∠DFB+∠DFA=180°,
    ∴∠DCA+∠DFA=180°.
    ∴∠BAC+∠CDF=180°.
    ∴∠CDF=90°.
    (3).
    证明:∵∠EAD=90°,
    ∴∠EAF=∠DAF=45°.
    ∵AD=AE,
    ∴△EAF≌△DAF.
    ∴DF=EF.
    由②可知,.
    ∴.


    【点睛】
    此题考查等腰三角形的性质,全等三角形的判定与性质,直角三角形的性质,解题关键在于掌握判定定理及性质.
    26、,1
    【解析】
    先算减法,把除法变成乘法,求出结果,求出不等式组的整数解,代入求出即可.
    【详解】
    解:原式=[﹣]

    =,
    ∵不等式组的解为<a<5,其整数解是2,3,4,
    a不能等于0,2,4,
    ∴a=3,
    当a=3时,原式==1.
    【点睛】
    本题考查了解一元一次不等式组、不等式组的整数解和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.
    27、(1)0≤x≤10;(1)x=6;(3)y=﹣πx1+54πx.
    【解析】
    (1)根据题意,得AC=CN+PN,进一步求得AB的长,即可求得x的取值范围;
    (1)根据等边三角形的判定和性质即可求解;
    (3)连接MN、EF,分别交AC于B、H.此题根据菱形CMPN的性质求得MB的长,再根据相似三角形的对应边的比相等,求得圆的半径即可.
    【详解】
    (1)∵BC=1分米,AC=CN+PN=11分米,
    ∴AB=AC﹣BC=10分米,
    ∴x的取值范围是:0≤x≤10;
    (1)∵CN=PN,∠CPN=60°,
    ∴△PCN是等边三角形,
    ∴CP=6分米,
    ∴AP=AC﹣PC=6分米,
    即当∠CPN=60°时,x=6;
    (3)连接MN、EF,分别交AC于B、H,

    ∵PM=PN=CM=CN,
    ∴四边形PNCM是菱形,
    ∴MN与PC互相垂直平分,AC是∠ECF的平分线,
    PB==6-,
    在Rt△MBP中,PM=6分米,
    ∴MB1=PM1﹣PB1=61﹣(6﹣x)1=6x﹣x1.
    ∵CE=CF,AC是∠ECF的平分线,
    ∴EH=HF,EF⊥AC,
    ∵∠ECH=∠MCB,∠EHC=∠MBC=90°,
    ∴△CMB∽△CEH,
    ∴=,
    ∴,
    ∴EH1=9•MB1=9•(6x﹣x1),
    ∴y=π•EH1=9π(6x﹣x1),
    即y=﹣πx1+54πx.
    【点睛】
    此题主要考查了相似三角形的应用以及菱形的性质和二次函数的应用,难点是第(3)问,熟练运用菱形的性质、相似三角形的性质和二次函数的实际应用.

    相关试卷

    新疆昌吉州奇台县重点达标名校2022年毕业升学考试模拟卷数学卷含解析: 这是一份新疆昌吉州奇台县重点达标名校2022年毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了的绝对值是等内容,欢迎下载使用。

    云南省腾冲市重点达标名校2022年毕业升学考试模拟卷数学卷含解析: 这是一份云南省腾冲市重点达标名校2022年毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了cs30°的相反数是等内容,欢迎下载使用。

    宁波市海曙区重点达标名校2022年毕业升学考试模拟卷数学卷含解析: 这是一份宁波市海曙区重点达标名校2022年毕业升学考试模拟卷数学卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map