![菏泽市2022年中考数学全真模拟试卷含解析01](http://img-preview.51jiaoxi.com/2/3/13127737/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![菏泽市2022年中考数学全真模拟试卷含解析02](http://img-preview.51jiaoxi.com/2/3/13127737/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![菏泽市2022年中考数学全真模拟试卷含解析03](http://img-preview.51jiaoxi.com/2/3/13127737/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
菏泽市2022年中考数学全真模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.用尺现作图的方法在一个平行四边形内作菱形,下列作法错误的是 ( )
A. B. C. D.
2.如图,G,E分别是正方形ABCD的边AB,BC上的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正确的结论有( )
A.4 个 B.3 个 C.2 个 D.1 个
3.根据中国铁路总公司3月13日披露,2018年铁路春运自2月1日起至3月12日止,为期40天全国铁路累计发送旅客3.82亿人次.3.82亿用科学记数法可以表示为( )
A.3.82×107 B.3.82×108 C.3.82×109 D.0.382×1010
4.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣1t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是( )
A.①④⑤ B.①②④ C.①③④ D.①③⑤
5.如图,在△ABC中,过点B作PB⊥BC于B,交AC于P,过点C作CQ⊥AB,交AB延长线于Q,则△ABC的高是( )
A.线段PB B.线段BC C.线段CQ D.线段AQ
6.若关于x的不等式组无解,则m的取值范围( )
A.m>3 B.m<3 C.m≤3 D.m≥3
7.超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( )
A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90
8.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是( )
A. B. C. D.
9.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( ).
A. B. C. D.
10.某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了( )
A.25本 B.20本 C.15本 D.10本
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知、为两个连续的整数,且,则=________.
12.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于 ______ 度.
13.已知,如图,正方形ABCD的边长是8,M在DC上,且DM=2,N是AC边上的一动点,则DN+MN的最小值是_____.
14.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB的面积为__________ .
15.在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出_____环的成绩.
16.如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y=(x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C、D,过点B作EF∥x轴分别与y轴和抛物线C1交于点E、F,则 的值为_____.
三、解答题(共8题,共72分)
17.(8分)城市小区生活垃圾分为:餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四种不同的类型.
(1)甲投放了一袋垃圾,恰好是餐厨垃圾的概率是 ;
(2)甲、乙分别投放了一袋垃圾,求恰好是同一类型垃圾的概率.
18.(8分)如图,在平面直角坐标系xOy中,将抛物线y=x2平移,使平移后的抛物线经过点A(–3,0)、B(1,0).
(1)求平移后的抛物线的表达式.
(2)设平移后的抛物线交y轴于点C,在平移后的抛物线的对称轴上有一动点P,当BP与CP之和最小时,P点坐标是多少?
(3)若y=x2与平移后的抛物线对称轴交于D点,那么,在平移后的抛物线的对称轴上,是否存在一点M,使得以M、O、D为顶点的三角形△BOD相似?若存在,求点M坐标;若不存在,说明理由.
19.(8分)解方程组:.
20.(8分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,其中b班征集到作品 件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.
21.(8分)我市正在开展“食品安全城市”创建活动,为了解学生对食品安全知识的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A非常了解、B了解、C了解较少、D不了解”四类分别进行统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:
此次共调查了 名学生;扇形统计图中D所在扇形的圆心角为 ;将上面的条形统计图补充完整;若该校共有800名学生,请你估计对食品安全知识“非常了解”的学生的人数.
22.(10分)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为 且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成木是18元/千克,每天的利润是W元(利润=销售收入﹣成本).m= ,n= ;求销售蓝莓第几天时,当天的利润最大?最大利润是多少?在销售蓝莓的30天中,当天利润不低于870元的共有多少天?
23.(12分)2019年1月,温州轨道交通线正式运营,线有以下4种购票方式:
A.二维码过闸 B.现金购票 C.市名卡过闸 D.银联闪付
某兴趣小组为了解最受欢迎的购票方式,随机调查了某区的若干居民,得到如图所示的统计图,已知选择方式D的有200人,求选择方式A的人数.小博和小雅对A,B,C三种购票方式的喜爱程度相同,随机选取一种方式购票,求他们选择同一种购票方式的概率.(要求列表或画树状图).
24.如图1,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN.
(1)观察猜想:
图1中,PM与PN的数量关系是 ,位置关系是 .
(2)探究证明:
将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H,判断△PMN的形状,并说明理由;
(3)拓展延伸:
把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN面积的最大值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
根据菱形的判定方法一一判定即可
【详解】
作的是角平分线,只能说明四边形ABCD是平行四边形,故A符合题意
B、作的是连接AC,分别做两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,能得到AB=BC,AD=CD,又AB∥CD,所以四边形ABCD为菱形,B不符合题意
C、由辅助线可知AD=AB=BC,又AD∥BC,所以四边形ABCD为菱形,C不符合题意
D、作的是BD垂直平分线,由平行四边形中心对称性质可知AC与BD互相平分且垂直,得到四边形ABCD是菱形,D不符合题意
故选A
【点睛】
本题考查平行四边形的判定,能理解每个图的作法是本题解题关键
2、C
【解析】
由∠BEG=45°知∠BEA>45°,结合∠AEF=90°得∠HEC<45°,据此知 HC<EC,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据 SAS 推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH 不相似,即可判断④.
【详解】
解:∵四边形 ABCD 是正方形,
∴AB=BC=CD,
∵AG=GE,
∴BG=BE,
∴∠BEG=45°,
∴∠BEA>45°,
∵∠AEF=90°,
∴∠HEC<45°,
∴HC<EC,
∴CD﹣CH>BC﹣CE,即 DH>BE,故①错误;
∵BG=BE,∠B=90°,
∴∠BGE=∠BEG=45°,
∴∠AGE=135°,
∴∠GAE+∠AEG=45°,
∵AE⊥EF,
∴∠AEF=90°,
∵∠BEG=45°,
∴∠AEG+∠FEC=45°,
∴∠GAE=∠FEC,
在△GAE 和△CEF 中,
∵AG=CE,
∠GAE=∠CEF,
AE=EF,
∴△GAE≌△CEF(SAS)),
∴②正确;
∴∠AGE=∠ECF=135°,
∴∠FCD=135°﹣90°=45°,
∴③正确;
∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,
∴∠FEC<45°,
∴△GBE 和△ECH 不相似,
∴④错误;
故选:C.
【点睛】
本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.
3、B
【解析】
根据题目中的数据可以用科学记数法表示出来,本题得以解决.
【详解】
解:3.82亿=3.82×108,
故选B.
【点睛】
本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法.
4、D
【解析】
根据题意,得到P、Q分别同时到达D、C可判断①②,分段讨论PQ位置后可以判断③,再由等腰三角形的分类讨论方法确定④,根据两个点的相对位置判断点P在DC上时,存在△BPQ与△BEA相似的可能性,分类讨论计算即可.
【详解】
解:由图象可知,点Q到达C时,点P到E则BE=BC=10,ED=4
故①正确
则AE=10﹣4=6
t=10时,△BPQ的面积等于
∴AB=DC=8
故
故②错误
当14<t<22时,
故③正确;
分别以A、B为圆心,AB为半径画圆,将两圆交点连接即为AB垂直平分线
则⊙A、⊙B及AB垂直平分线与点P运行路径的交点是P,满足△ABP是等腰三角形
此时,满足条件的点有4个,故④错误.
∵△BEA为直角三角形
∴只有点P在DC边上时,有△BPQ与△BEA相似
由已知,PQ=22﹣t
∴当或时,△BPQ与△BEA相似
分别将数值代入
或,
解得t=(舍去)或t=14.1
故⑤正确
故选:D.
【点睛】
本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角
形判定,应用了分类讨论和数形结合的数学思想.
5、C
【解析】
根据三角形高线的定义即可解题.
【详解】
解:当AB为△ABC的底时,过点C向AB所在直线作垂线段即为高,故CQ是△ABC的高,
故选C.
【点睛】
本题考查了三角形高线的定义,属于简单题,熟悉高线的作法是解题关键.
6、C
【解析】
根据“大大小小找不着”可得不等式2+m≥2m-1,即可得出m的取值范围.
【详解】
,
由①得:x>2+m,
由②得:x<2m﹣1,
∵不等式组无解,
∴2+m≥2m﹣1,
∴m≤3,
故选C.
【点睛】
考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则得出是解题关键.
7、A
【解析】
试题分析:设某种书包原价每个x元,根据题意列出方程解答即可. 设某种书包原价每个x元,
可得:0.8x﹣10=90
考点:由实际问题抽象出一元一次方程.
8、D
【解析】
A选项:
∠1+∠2=360°-90°×2=180°;
B选项:
∵∠2+∠3=90°,∠3+∠4=90°,
∴∠2=∠4,
∵∠1+∠4=180°,
∴∠1+∠2=180°;
C选项:
∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,
∵∠1+∠EFC=180°,∴∠1+∠2=180°;
D选项:∠1和∠2不一定互补.
故选D.
点睛:本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系.
9、B
【解析】
朝上的数字为偶数的有3种可能,再根据概率公式即可计算.
【详解】
依题意得P(朝上一面的数字是偶数)=
故选B.
【点睛】
此题主要考查概率的计算,解题的关键是熟知概率公式进行求解.
10、C
【解析】
设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40﹣x)本,乙种笔记本的单价是(y+3)元,根据题意列出关于x、y的二元一次方程组,求出x、y的值即可.
【详解】
解:设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40﹣x)本,乙种笔记本的单价是(y+3)元,
根据题意,得:,
解得:,
答:甲种笔记本买了25本,乙种笔记本买了15本.
故选C.
【点睛】
本题考查的是二元二次方程组的应用,能根据题意得出关于x、y的二元二次方程组是解答此题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、11
【解析】
根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.
【详解】
∵a<<b,a、b为两个连续的整数,
∴,
∴a=5,b=6,
∴a+b=11.
故答案为11.
【点睛】
本题考查的是估算无理数的大小,熟练掌握无理数是解题的关键.
12、108°
【解析】
如图,易得△OCD为等腰三角形,根据正五边形内角度数可求出∠OCD,然后求出顶角∠COD,再用360°减去∠AOC、∠BOD、∠COD即可
【详解】
∵五边形是正五边形,
∴每一个内角都是108°,
∴∠OCD=∠ODC=180°-108°=72°,
∴∠COD=36°,
∴∠AOB=360°-108°-108°-36°=108°.
故答案为108°
【点睛】
本题考查正多边形的内角计算,分析出△OCD是等腰三角形,然后求出顶角是关键.
13、1
【解析】
分析:要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.
解答:
解:如图,连接BM,
∵点B和点D关于直线AC对称,∴NB=ND,则BM就是DN+MN的最小值,∵正方形ABCD的边长是8,DM=2,∴CM=6,∴BM==1,∴DN+MN的最小值是1.
故答案为1.
点评:考查正方形的性质和轴对称及勾股定理等知识的综合应用.
14、
【解析】
设扇形的圆心角为n°,则根据扇形的弧长公式有: ,解得
所以
15、8
【解析】
为了使第8次的环数最少,可使后面的2次射击都达到最高环数,即10环.
设第8次射击环数为x环,根据题意列出一元一次不等式
62+x+2×10>89
解之,得
x>7
x表示环数,故x为正整数且x>7,则
x的最小值为8
即第8次至少应打8环.
点睛:本题考查的是一元一次不等式的应用.解决此类问题的关键是在理解题意的基础上,建立与之相应的解决问题的“数学模型”——不等式,再由不等式的相关知识确定问题的答案.
16、
【解析】
根据二次函数的图象和性质结合三角形面积公式求解.
【详解】
解:设点横坐标为,则点纵坐标为,点B的纵坐标为 ,
∵BE∥x轴,
∴点F纵坐标为,
∵点F是抛物线上的点,
∴点F横坐标为,
∵轴,
∴点D纵坐标为,
∵点D是抛物线上的点,
∴点D横坐标为,
,
故答案为.
【点睛】
此题重点考查学生对二次函数的图象和性质的应用能力,熟练掌握二次函数的图象和性质是解题的关键.
三、解答题(共8题,共72分)
17、(1);(2)
【解析】
(1)直接利用概率公式求出甲投放的垃圾恰好是“餐厨垃圾”的概率;
(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.
【详解】
解:(1)∵垃圾要按餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四类分别装袋,甲投放了一袋垃圾,
∴甲投放了一袋是餐厨垃圾的概率是,
故答案为:;
(2)记这四类垃圾分别为A、B、C、D,
画树状图如下:
由树状图知,甲、乙投放的垃圾共有16种等可能结果,其中投放的两袋垃圾同类的有4种结果,
所以投放的两袋垃圾同类的概率为=.
【点睛】
本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
18、(1)y=x2+2x﹣3;(2)点P坐标为(﹣1,﹣2);(3)点M坐标为(﹣1,3)或(﹣1,2).
【解析】
(1)设平移后抛物线的表达式为y=a(x+3)(x-1).由题意可知平后抛物线的二次项系数与原抛物线的二次项系数相同,从而可求得a的值,于是可求得平移后抛物线的表达式;
(2)先根据平移后抛物线解析式求得其对称轴,从而得出点C关于对称轴的对称点C′坐标,连接BC′,与对称轴交点即为所求点P,再求得直线BC′解析式,联立方程组求解可得;
(3)先求得点D的坐标,由点O、B、E、D的坐标可求得OB、OE、DE、BD的长,从而可得到△EDO为等腰三角直角三角形,从而可得到∠MDO=∠BOD=135°,故此当或时,以M、O、D为顶点的三角形与△BOD相似.由比例式可求得MD的长,于是可求得点M的坐标.
【详解】
(1)设平移后抛物线的表达式为y=a(x+3)(x﹣1),
∵由平移的性质可知原抛物线与平移后抛物线的开口大小与方向都相同,
∴平移后抛物线的二次项系数与原抛物线的二次项系数相同,
∴平移后抛物线的二次项系数为1,即a=1,
∴平移后抛物线的表达式为y=(x+3)(x﹣1),
整理得:y=x2+2x﹣3;
(2)∵y=x2+2x﹣3=(x+1)2﹣4,
∴抛物线对称轴为直线x=﹣1,与y轴的交点C(0,﹣3),
则点C关于直线x=﹣1的对称点C′(﹣2,﹣3),
如图1,
连接B,C′,与直线x=﹣1的交点即为所求点P,
由B(1,0),C′(﹣2,﹣3)可得直线BC′解析式为y=x﹣1,
则,
解得,
所以点P坐标为(﹣1,﹣2);
(3)如图2,
由得,即D(﹣1,1),
则DE=OD=1,
∴△DOE为等腰直角三角形,
∴∠DOE=∠ODE=45°,∠BOD=135°,OD=,
∵BO=1,
∴BD=,
∵∠BOD=135°,
∴点M只能在点D上方,
∵∠BOD=∠ODM=135°,
∴当或时,以M、O、D为顶点的三角形△BOD相似,
①若,则,解得DM=2,
此时点M坐标为(﹣1,3);
②若,则,解得DM=1,
此时点M坐标为(﹣1,2);
综上,点M坐标为(﹣1,3)或(﹣1,2).
【点睛】
本题主要考查的是二次函数的综合应用,解答本题主要应用了平移的性质、翻折的性质、二次函数的图象和性质、待定系数法求二次函数的解析式、等腰直角三角形的性质、相似三角形的判定,证得∠ODM=∠BOD=135°是解题的关键.
19、;;.
【解析】
分析:
把原方程组中的第二个方程通过分解因式降次,转化为两个一次方程,再分别和第一方程组合成两个新的方程组,分别解这两个新的方程组即可求得原方程组的解.
详解:
由方程可得,,;
则原方程组转化为(Ⅰ)或 (Ⅱ),
解方程组(Ⅰ)得,
解方程组(Ⅱ)得 ,
∴原方程组的解是 .
点睛:本题考查的是二元二次方程组的解法,解题的要点有两点:(1)把原方程组中的第2个方程通过分解因式降次转化为两个二元一次方程,并分别和第1个方程组合成两个新的方程组;(2)将两个新的方程组消去y,即可得到关于x的一元二次方程.
20、(1)抽样调查;12;3;(2)60;(3).
【解析】
试题分析:(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数;
(2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;
(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.
试题解析:(1)抽样调查,
所调查的4个班征集到作品数为:5÷=12件,B作品的件数为:12﹣2﹣5﹣2=3件,故答案为抽样调查;12;3;把图2补充完整如下:
(2)王老师所调查的四个班平均每个班征集作品=12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);
(3)画树状图如下:
列表如下:
共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)==,即恰好抽中一男一女的概率是.
考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法;5.图表型.
21、(1)120;(2)54°;(3)详见解析(4)1.
【解析】
(1)根据B的人数除以占的百分比即可得到总人数;
(2)先根据题意列出算式,再求出即可;
(3)先求出对应的人数,再画出即可;
(4)先列出算式,再求出即可.
【详解】
(1)(25+23)÷40%=120(名),
即此次共调查了120名学生,
故答案为120;
(2)360°×=54°,
即扇形统计图中D所在扇形的圆心角为54°,
故答案为54°;
(3)如图所示:
;
(4)800×=1(人),
答:估计对食品安全知识“非常了解”的学生的人数是1人.
【点睛】
本题考查了条形统计图、扇形统计图,总体、个体、样本、样本容量,用样本估计总体等知识点,两图结合是解题的关键.
22、(1)m=﹣,n=25;(2)18,W最大=968;(3)12天.
【解析】
【分析】(1)根据题意将第12天的售价、第26天的售价代入即可得;
(2)在(1)的基础上分段表示利润,讨论最值;
(3)分别在(2)中的两个函数取值范围内讨论利润不低于870的天数,注意天数为正整数.
【详解】(1)当第12天的售价为32元/件,代入y=mx﹣76m得
32=12m﹣76m,
解得m=,
当第26天的售价为25元/千克时,代入y=n,
则n=25,
故答案为m=,n=25;
(2)由(1)第x天的销售量为20+4(x﹣1)=4x+16,
当1≤x<20时,
W=(4x+16)(x+38﹣18)=﹣2x2+72x+320=﹣2(x﹣18)2+968,
∴当x=18时,W最大=968,
当20≤x≤30时,W=(4x+16)(25﹣18)=28x+112,
∵28>0,
∴W随x的增大而增大,
∴当x=30时,W最大=952,
∵968>952,
∴当x=18时,W最大=968;
(3)当1≤x<20时,令﹣2x2+72x+320=870,
解得x1=25,x2=11,
∵抛物线W=﹣2x2+72x+320的开口向下,
∴11≤x≤25时,W≥870,
∴11≤x<20,
∵x为正整数,
∴有9天利润不低于870元,
当20≤x≤30时,令28x+112≥870,
解得x≥27,
∴27≤x≤30
∵x为正整数,
∴有3天利润不低于870元,
∴综上所述,当天利润不低于870元的天数共有12天.
【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准题中的数量关系,运用分类讨论思想是解题的关键.
23、 (1)600人(2)
【解析】
(1)计算方式A的扇形圆心角占D的圆心角的分率,然后用方式D的人数乘这个分数即为方式A的人数;
(2)列出表格或树状图分别求出所有情况以及两名同学恰好选中同一种购票方式的情况后,利用概率公式即可求出两名同学恰好选中同一种购票方式的概率.
【详解】
(1)(人),∴最喜欢方式A的有600人
(2)列表法:
A
B
C
A
A,A
A,B
A,C
B
B,A
B,B
B,C
C
C,A
C,B
C,C
树状法:
∴(同一种购票方式)
【点睛】
本题考查扇形统计图的运用和列表法或画树状图求概率的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
24、(1)PM=PN,PM⊥PN(2)等腰直角三角形,理由见解析(3)
【解析】
(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;
(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;
(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出当BD的值最大时,PM的值最大,△PMN的面积最大,推出当B、C、D共线时,BD的最大值=BC+CD=6,由此即可解决问题;
【详解】
解:(1)PM=PN,PM⊥PN,理由如下:
延长AE交BD于O,
∵△ACB和△ECD是等腰直角三角形,
∴AC=BC,EC=CD,∠ACB=∠ECD=90°.
在△ACE和△BCD中
,
∴△ACE≌△BCD(SAS),
∴AE=BD,∠EAC=∠CBD,
∵∠EAC+∠AEC=90°,∠AEC=∠BEO,
∴∠CBD+∠BEO=90°,
∴∠BOE=90°,即AE⊥BD,
∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,
∴PM=BD,PN=AE,
∴PM=PM,
∵PM∥BD,PN∥AE,AE⊥BD,
∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,
∴∠MPA+∠NPC=90°,
∴∠MPN=90°,
即PM⊥PN,
故答案是:PM=PN,PM⊥PN;
(2)如图②中,设AE交BC于O,
∵△ACB和△ECD是等腰直角三角形,
∴AC=BC,EC=CD,
∠ACB=∠ECD=90°,
∴∠ACB+∠BCE=∠ECD+∠BCE,
∴∠ACE=∠BCD,
∴△ACE≌△BCD,
∴AE=BD,∠CAE=∠CBD,
又∵∠AOC=∠BOE,
∠CAE=∠CBD,
∴∠BHO=∠ACO=90°,
∵点P、M、N分别为AD、AB、DE的中点,
∴PM=BD,PM∥BD,
PN=AE,PN∥AE,
∴PM=PN,
∴∠MGE+∠BHA=180°,
∴∠MGE=90°,
∴∠MPN=90°,
∴PM⊥PN;
(3)由(2)可知△PMN是等腰直角三角形,PM=BD,
∴当BD的值最大时,PM的值最大,△PMN的面积最大,
∴当B、C、D共线时,BD的最大值=BC+CD=6,
∴PM=PN=3,
∴△PMN的面积的最大值=×3×3=.
【点睛】
本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形中位线定理的运用,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.
2022年如皋实验初中中考数学全真模拟试卷含解析: 这是一份2022年如皋实验初中中考数学全真模拟试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,分式方程=1的解为等内容,欢迎下载使用。
2022年山东省菏泽市牡丹区胡集中学中考数学全真模拟试题含解析: 这是一份2022年山东省菏泽市牡丹区胡集中学中考数学全真模拟试题含解析,共22页。试卷主要包含了已知,代数式的值为等内容,欢迎下载使用。
2022年广西贵港市港南区中考数学全真模拟试卷含解析: 这是一份2022年广西贵港市港南区中考数学全真模拟试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,下列各式计算正确的是等内容,欢迎下载使用。