![黑龙江北安市2022年中考数学适应性模拟试题含解析第1页](http://img-preview.51jiaoxi.com/2/3/13127730/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![黑龙江北安市2022年中考数学适应性模拟试题含解析第2页](http://img-preview.51jiaoxi.com/2/3/13127730/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![黑龙江北安市2022年中考数学适应性模拟试题含解析第3页](http://img-preview.51jiaoxi.com/2/3/13127730/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
黑龙江北安市2022年中考数学适应性模拟试题含解析
展开
这是一份黑龙江北安市2022年中考数学适应性模拟试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,不等式组的解集在数轴上表示为,下列说法正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是( )
A. B. C. D.
2.计算3×(﹣5)的结果等于( )
A.﹣15 B.﹣8 C.8 D.15
3.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是 ()
A. B. C. D.
4.不等式组的解集在数轴上表示为( )
A. B. C. D.
5.如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上 小正方体的个数,那么该几何体的主视图是( )
A. B. C. D.
6.九年级学生去距学校10 km的博物馆参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h,则所列方程正确的是( )
A. B.
C. D.
7.已知二次函数y=x2﹣4x+m的图象与x轴交于A、B两点,且点A的坐标为(1,0),则线段AB的长为( )
A.1 B.2 C.3 D.4
8.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )
A. B. C. D.
9. “可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿用科学记数法可表示为( )
A.0.8×1011 B.8×1010 C.80×109 D.800×108
10.下列说法正确的是( )
A.2a2b与–2b2a的和为0
B.的系数是,次数是4次
C.2x2y–3y2–1是3次3项式
D.x2y3与– 是同类项
二、填空题(本大题共6个小题,每小题3分,共18分)
11.反比例函数y=与正比例函数y=k2x的图象的一个交点为(2,m),则=____.
12.A.如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有_____条.
B.用计算器计算:•tan63°27′≈_____(精确到0.01).
13.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为 .
14. “五一”期间,一批九年级同学包租一辆面包车前去竹海游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费.若设参加游览的同学一共有x人,为求x,可列方程_____.
15.分解因式:x2y﹣y=_____.
16.化简:=_____.
三、解答题(共8题,共72分)
17.(8分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:
销售方式
粗加工后销售
精加工后销售
每吨获利(元)
1000
2000
已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.
(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?
(2)如果先进行精加工,然后进行粗加工.
①试求出销售利润元与精加工的蔬菜吨数之间的函数关系式;
②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?
18.(8分)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P,Q两点为同族点.下图中的P,Q两点即为同族点.
(1)已知点A的坐标为(﹣3,1),①在点R(0,4),S(2,2),T(2,﹣3)中,为点A的同族点的是 ;②若点B在x轴上,且A,B两点为同族点,则点B的坐标为 ;
(2)直线l:y=x﹣3,与x轴交于点C,与y轴交于点D,
①M为线段CD上一点,若在直线x=n上存在点N,使得M,N两点为同族点,求n的取值范围;
②M为直线l上的一个动点,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N两点为同族点,直接写出m的取值范围.
19.(8分)已知:如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.
求证:(1)△AFD≌△CEB.(2)四边形ABCD是平行四边形.
20.(8分)如图,已知▱ABCD.作∠B的平分线交AD于E点。(用尺规作图法,保留作图痕迹,不要求写作法);若▱ABCD的周长为10,CD=2,求DE的长。
21.(8分)在矩形纸片ABCD中,AB=6,BC=8,现将纸片折叠,使点D与点B重合,折痕为EF,连接DF.
(1)说明△BEF是等腰三角形;
(2)求折痕EF的长.
22.(10分)规定:不相交的两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离”
(1)求抛物线y=x2﹣2x+3与x轴的“亲近距离”;
(2)在探究问题:求抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由.
(3)若抛物线y=x2﹣2x+3与抛物线y=+c的“亲近距离”为,求c的值.
23.(12分)某中学采用随机的方式对学生掌握安全知识的情况进行测评,并按成绩高低分成优、良、中、差四个等级进行统计,绘制了下面两幅尚不完整的统计图.请根据有关信息解答:
(1)接受测评的学生共有________人,扇形统计图中“优”部分所对应扇形的圆心角为________°,并补全条形统计图;
(2)若该校共有学生1200人,请估计该校对安全知识达到“良”程度的人数;
(3)测评成绩前五名的学生恰好3个女生和2个男生,现从中随机抽取2人参加市安全知识竞赛,请用树状图或列表法求出抽到1个男生和1个女生的概率.
24.如图1,在菱形ABCD中,AB=,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.
(1)求证:BE=DF;
(2)当t= 秒时,DF的长度有最小值,最小值等于 ;
(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明S△OCD=S△ACD,S△OEF=S△AEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆,即可求解.
【详解】作直径CG,连接OD、OE、OF、DG.
∵CG是圆的直径,
∴∠CDG=90°,则DG==8,
又∵EF=8,
∴DG=EF,
∴,
∴S扇形ODG=S扇形OEF,
∵AB∥CD∥EF,
∴S△OCD=S△ACD,S△OEF=S△AEF,
∴S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=π×52=,
故选A.
【点睛】本题考查扇形面积的计算,圆周角定理.本题中找出两个阴影部分面积之间的联系是解题的关键.
2、A
【解析】
按照有理数的运算规则计算即可.
【详解】
原式=-3×5=-15,故选择A.
【点睛】
本题考查了有理数的运算,注意符号不要搞错.
3、A
【解析】
从左面看,得到左边2个正方形,中间3个正方形,右边1个正方形.故选A.
4、A
【解析】
分别求得不等式组中两个不等式的解集,再确定不等式组的解集,表示在数轴上即可.
【详解】
解不等式①得,x>1;
解不等式②得,x>2;
∴不等式组的解集为:x≥2,
在数轴上表示为:
故选A.
【点睛】
本题考查了一元一次不等式组的解法,正确求得不等式组中每个不等式的解集是解决问题的关键.
5、C
【解析】
A、B、D不是该几何体的视图,C是主视图,故选C.
【点睛】主视图是由前面看到的图形,俯视图是由上面看到的图形,左视图是由左面看到的图形,能看到的线画实线,看不到的线画虚线.
6、C
【解析】
试题分析:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得,.故选C.
考点:由实际问题抽象出分式方程.
7、B
【解析】
先将点A(1,0)代入y=x2﹣4x+m,求出m的值,将点A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1•x2=3,即可解答
【详解】
将点A(1,0)代入y=x2﹣4x+m,
得到m=3,
所以y=x2﹣4x+3,与x轴交于两点,
设A(x1,y1),b(x2,y2)
∴x2﹣4x+3=0有两个不等的实数根,
∴x1+x2=4,x1•x2=3,
∴AB=|x1﹣x2|= =2;
故选B.
【点睛】
此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.
8、A
【解析】
根据从正面看得到的图形是主视图,可得答案.
【详解】
解:从正面看第一层是三个小正方形,第二层中间有一个小正方形,
故选:A.
【点睛】
本题考查了简单组合体的三视图,从正面看得到的图形是主视图.
9、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将800亿用科学记数法表示为:8×1.
故选:B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10、C
【解析】
根据多项式的项数和次数及单项式的系数和次数、同类项的定义逐一判断可得.
【详解】
A、2a2b与-2b2a不是同类项,不能合并,此选项错误;
B、πa2b的系数是π,次数是3次,此选项错误;
C、2x2y-3y2-1是3次3项式,此选项正确;
D、x2y3与﹣相同字母的次数不同,不是同类项,此选项错误;
故选C.
【点睛】
本题主要考查多项式、单项式、同类项,解题的关键是掌握多项式的项数和次数及单项式的系数和次数、同类项的定义.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、4
【解析】
利用交点(2,m)同时满足在正比例函数和反比例函数上,分别得出m和、的关系.
【详解】
把点(2,m)代入反比例函数和正比例函数中得,,,则.
【点睛】
本题主要考查了函数的交点问题和待定系数法,熟练掌握待定系数法是本题的解题关键.
12、20 5.1
【解析】
A、先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;
B、利用计算器计算可得.
【详解】
A、根据题意,此正多边形的边数为360°÷45°=8,
则这个正多边形对角线的条数一共有=20,
故答案为20;
B、•tan63°27′≈2.646×2.001≈5.1,
故答案为5.1.
【点睛】
本题主要考查计算器-三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用.
13、-6
【解析】
分析:∵菱形的两条对角线的长分别是6和4,
∴A(﹣3,2).
∵点A在反比例函数的图象上,
∴,解得k=-6.
【详解】
请在此输入详解!
14、 ﹣=1.
【解析】
原有的同学每人分担的车费应该为,而实际每人分担的车费为,方程应该表示为:﹣=1.
故答案是:﹣=1.
15、y(x+1)(x﹣1)
【解析】
观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2-1符合平方差公式,利用平方差公式继续分解可得.
【详解】
解:x2y﹣y
=y(x2﹣1)
=y(x+1)(x﹣1).
故答案为:y(x+1)(x﹣1).
【点睛】
本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
16、-6
【解析】
根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可:
【详解】
,
故答案为-6
三、解答题(共8题,共72分)
17、(1)应安排4天进行精加工,8天进行粗加工
(2)①=
②安排1天进行精加工,9天进行粗加工,可以获得最多利润为元
【解析】
解:(1)设应安排天进行精加工,天进行粗加工,
根据题意得
解得
答:应安排4天进行精加工,8天进行粗加工.
(2)①精加工吨,则粗加工()吨,根据题意得
=
②要求在不超过10天的时间内将所有蔬菜加工完,
解得
又在一次函数中,,
随的增大而增大,
当时,
精加工天数为=1,
粗加工天数为
安排1天进行精加工,9天进行粗加工,可以获得最多利润为元.
18、(1)①R,S;②(,0)或(4,0);(2)①;②m≤或m≥1.
【解析】
(1)∵点A的坐标为(−2,1),
∴2+1=4,
点R(0,4),S(2,2),T(2,−2)中,
0+4=4,2+2=4,2+2=5,
∴点A的同族点的是R,S;
故答案为R,S;
②∵点B在x轴上,
∴点B的纵坐标为0,
设B(x,0),
则|x|=4,
∴x=±4,
∴B(−4,0)或(4,0);
故答案为(−4,0)或(4,0);
(2)①由题意,直线与x轴交于C(2,0),与y轴交于D(0,).
点M在线段CD上,设其坐标为(x,y),则有:
,,且.
点M到x轴的距离为,点M到y轴的距离为,
则.
∴点M的同族点N满足横纵坐标的绝对值之和为2.
即点N在右图中所示的正方形CDEF上.
∵点E的坐标为(,0),点N在直线上,
∴.
②如图,设P(m,0)为圆心, 为半径的圆与直线y=x−2相切,
∴PC=2,
∴OP=1,
观察图形可知,当m≥1时,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N两点为同族点,再根据对称性可知,m≤也满足条件,
∴满足条件的m的范围:m≤或m≥1
19、证明见解析
【解析】
证明:(1)∵DF∥BE,
∴∠DFE=∠BEF.
又∵AF=CE,DF=BE,
∴△AFD≌△CEB(SAS).
(2)由(1)知△AFD≌△CEB,
∴∠DAC=∠BCA,AD=BC,
∴AD∥BC.
∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).
(1)利用两边和它们的夹角对应相等的两三角形全等(SAS),这一判定定理容易证明△AFD≌△CEB.
(2)由△AFD≌△CEB,容易证明AD=BC且AD∥BC,可根据一组对边平行且相等的四边形是平行四边形.
20、(1)作图见解析;(2)1
【解析】
(1)以点B为圆心,任意长为半径画弧分别与AB、BC相交。然后再分别以交点为圆心,以交点间的距离为半径分别画弧,两弧相交于一点,画出射线BE即得.
(2)根据平行四边形的对边相等,可得AB+AD=5,由两直线平行内错角相等可得∠AEB=∠EBC,利用角平分线即得∠ABE=∠EBC,即证 ∠AEB=∠ABE .根据等角对等边可得AB=AE=2,从而求出ED的长.
【详解】
(1)解:如图所示:
(2)解:∵平行四边形ABCD的周长为10
∴AB+AD=5
∵AD//BC
∴∠AEB=∠EBC
又∵BE平分∠ABC
∴∠ABE=∠EBC
∴∠AEB=∠ABE
∴AB=AE=2
∴ED=AD-AE=3-2=1
【点睛】
此题考查作图-基本作图和平行四边形的性质,解题关键在于掌握作图法则
21、(1)见解析;(2).
【解析】
(1)根据折叠得出∠DEF=∠BEF,根据矩形的性质得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;
(2)过E作EM⊥BC于M,则四边形ABME是矩形,根据矩形的性质得出EM=AB=6,AE=BM,根据折叠得出DE=BE,根据勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.
【详解】
(1)∵现将纸片折叠,使点D与点B重合,折痕为EF,∴∠DEF=∠BEF.
∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形;
(2)过E作EM⊥BC于M,则四边形ABME是矩形,所以EM=AB=6,AE=BM.
∵现将纸片折叠,使点D与点B重合,折痕为EF,∴DE=BE,DO=BO,BD⊥EF.
∵四边形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.
在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.
在Rt△EMF中,由勾股定理得:EF==.
故答案为.
【点睛】
本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键.
22、(1)2;(2)不同意他的看法,理由详见解析;(3)c=1.
【解析】
(1)把y=x2﹣2x+3配成顶点式得到抛物线上的点到x轴的最短距离,然后根据题意解决问题;
(2)如图,P点为抛物线y=x2﹣2x+3任意一点,作PQ∥y轴交直线y=x﹣1于Q,设P(t,t2﹣2t+3),则Q(t,t﹣1),则PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函数的性质得到抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”,然后对他的看法进行判断;
(3)M点为抛物线y=x2﹣2x+3任意一点,作MN∥y轴交抛物线于N,设M(t,t2﹣2t+3),则N(t,t2+c),与(2)方法一样得到MN的最小值为﹣c,从而得到抛物线y=x2﹣2x+3与抛物线的“亲近距离”,所以,然后解方程即可.
【详解】
(1)∵y=x2﹣2x+3=(x﹣1)2+2,
∴抛物线上的点到x轴的最短距离为2,
∴抛物线y=x2﹣2x+3与x轴的“亲近距离”为:2;
(2)不同意他的看法.理由如下:
如图,P点为抛物线y=x2﹣2x+3任意一点,作PQ∥y轴交直线y=x﹣1于Q,
设P(t,t2﹣2t+3),则Q(t,t﹣1),
∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,
当t=时,PQ有最小值,最小值为,
∴抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”为,
而过抛物线的顶点向x轴作垂线与直线相交,抛物线顶点与交点之间的距离为2,
∴不同意他的看法;
(3)M点为抛物线y=x2﹣2x+3任意一点,作MN∥y轴交抛物线于N,
设M(t,t2﹣2t+3),则N(t,t2+c),
∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,
当t=时,MN有最小值,最小值为﹣c,
∴抛物线y=x2﹣2x+3与抛物线的“亲近距离”为﹣c,
∴,
∴c=1.
【点睛】
本题是二次函数的综合题,考查了二次函数图象上点的坐标特征和二次函数的性质,正确理解新定义是解题的关键.
23、 (1)80,135°,条形统计图见解析;(2)825人;(3)图表见解析,(抽到1男1女).
【解析】
试题分析:(1)、根据“中”的人数和百分比得出总人数,然后求出优所占的百分比,得出圆心角的度数;(2)、根据题意得出“良”和“优”两种所占的百分比,从而得出全校的总数;(3)、根据题意利用列表法或者树状图法画出所有可能出现的情况,然后根据概率的计算法则求出概率.
试题解析:(1)80,135°; 条形统计图如图所示
(2)该校对安全知识达到“良”程度的人数:(人)
(3)解法一:列表如下:
所有等可能的结果为20种,其中抽到一男一女的为12种,
所以(抽到1男1女).
女1
女2
女3
男1
男2
女1
---
女2女1
女3女1
男1女1
男2女1
女2
女1女2
---
女3女2
男1女2
男2女2
女3
女1女3
女2女3
---
男1女3
男2女3
男1
女1男1
女2男1
女3男1
---
男2男1
男2
女1男2
女2男2
女3男2
男1男2
---
解法二:画树状图如下:
所有等可能的结果为20种,其中抽到一男一女的为12种,
所以(抽到1男1女).
24、(1)见解析;(2)t=(6+6),最小值等于12;(3)t=6秒或6秒时,△EPQ是直角三角形
【解析】
(1)由∠ECF=∠BCD得∠DCF=∠BCE,结合DC=BC、CE=CF证△DCF≌△BCE即可得;
(2)作BE′⊥DA交DA的延长线于E′.当点E运动至点E′时,由DF=BE′知此时DF最小,求得BE′、AE′即可得答案;
(3)①∠EQP=90°时,由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根据AB=CD=6,tan∠ABC=tan∠ADC=2即可求得DE;
②∠EPQ=90°时,由菱形ABCD的对角线AC⊥BD知EC与AC重合,可得DE=6.
【详解】
(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,
∴∠DCF=∠BCE,
∵四边形ABCD是菱形,
∴DC=BC,
在△DCF和△BCE中,
,
∴△DCF≌△BCE(SAS),
∴DF=BE;
(2)如图1,作BE′⊥DA交DA的延长线于E′.
当点E运动至点E′时,DF=BE′,此时DF最小,
在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,
∴设AE′=x,则BE′=2x,
∴AB=x=6,x=6,
则AE′=6
∴DE′=6+6,DF=BE′=12,
时间t=6+6,
故答案为:6+6,12;
(3)∵CE=CF,
∴∠CEQ<90°,
①当∠EQP=90°时,如图2①,
∵∠ECF=∠BCD,BC=DC,EC=FC,
∴∠CBD=∠CEF,
∵∠BPC=∠EPQ,
∴∠BCP=∠EQP=90°,
∵AB=CD=6,tan∠ABC=tan∠ADC=2,
∴DE=6,
∴t=6秒;
②当∠EPQ=90°时,如图2②,
∵菱形ABCD的对角线AC⊥BD,
∴EC与AC重合,
∴DE=6,
∴t=6秒,
综上所述,t=6秒或6秒时,△EPQ是直角三角形.
【点睛】
此题是菱形与动点问题,考查菱形的性质,三角形全等的判定定理,等腰三角形的性质,最短路径问题,注意(3)中的直角没有明确时应分情况讨论解答.
相关试卷
这是一份黑龙江省尚志市2021-2022学年中考数学适应性模拟试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,点A,计算的结果是,下列说法中不正确的是等内容,欢迎下载使用。
这是一份黑龙江省黑河北安市达标名校2021-2022学年中考数学最后一模试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,的相反数是,如图,已知,,则的度数为等内容,欢迎下载使用。
这是一份黑龙江省北安市第四中学2022年中考三模数学试题含解析,共29页。试卷主要包含了答题时请按要求用笔,下列函数是二次函数的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)