![广东省揭阳市空港区重点达标名校2022年中考一模数学试题含解析01](http://img-preview.51jiaoxi.com/2/3/13127560/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省揭阳市空港区重点达标名校2022年中考一模数学试题含解析02](http://img-preview.51jiaoxi.com/2/3/13127560/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![广东省揭阳市空港区重点达标名校2022年中考一模数学试题含解析03](http://img-preview.51jiaoxi.com/2/3/13127560/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
广东省揭阳市空港区重点达标名校2022年中考一模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是( )
A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球
B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数
C.先后两次掷一枚质地均匀的硬币,两次都出现反面
D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9
2.如图,点E是四边形ABCD的边BC延长线上的一点,则下列条件中不能判定AD∥BE的是( )
A. B. C. D.
3.二次函数y=3(x﹣1)2+2,下列说法正确的是( )
A.图象的开口向下
B.图象的顶点坐标是(1,2)
C.当x>1时,y随x的增大而减小
D.图象与y轴的交点坐标为(0,2)
4.我国古代数学著作《九章算术》卷七“盈不足”中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:几个人合伙买一件物品,每人出8元,则余3元;若每人出7元,则少4元,问几人合买?这件物品多少钱?若设有x人合买,这件物品y元,则根据题意列出的二元一次方程组为( )
A. B. C. D.
5.若不等式组无解,那么m的取值范围是( )
A.m≤2 B.m≥2 C.m<2 D.m>2
6.如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值为
A.1 B. C. D.
7.如图,在矩形ABCD中,AB=2,BC=1.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为( )
A. B. C. D.
8.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )
A. B.4 C. D.
9.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为( )
A.1 B. C. D.
10.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中 5 个黑球, 从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋 中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:
摸球试验次数
100
1000
5000
10000
50000
100000
摸出黑球次数
46
487
2506
5008
24996
50007
根据列表,可以估计出 m 的值是( )
A.5 B.10 C.15 D.20
二、填空题(本大题共6个小题,每小题3分,共18分)
11.化简:+3=_____.
12.如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知AD=5,AE=2,AF=1.如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是______.
13.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A,B分别在l3,l2上,则sinα的值是_____.
14.已知边长为2的正六边形ABCDEF在平面直角坐标系中的位置如图所示,点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过2018次翻转之后,点B的坐标是______.
15.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_____.
16.如果等腰三角形的两内角度数相差45°,那么它的顶角度数为_____.
三、解答题(共8题,共72分)
17.(8分)如图,在矩形纸片ABCD中,AB=6,BC=1.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.
(1)求证:△ABG≌△C′DG;
(2)求tan∠ABG的值;
(3)求EF的长.
18.(8分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:≈2.449,结果保留整数)
19.(8分)九(3)班“2017年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.
(1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,求小芳获奖的概率.
(2)如果小芳、小明都有翻两张牌的机会.小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们获奖的机会相等吗?通过树状图分析说明理由.
20.(8分)武汉二中广雅中学为了进一步改进本校九年级数学教学,提高学生学习数学的兴趣.校教务处在九年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查:我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“非常喜欢”、“ 比较喜欢”、“ 不太喜欢”、“ 很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计.现将统计结果绘制成如下两幅不完整的统计图.
请你根据以上提供的信息,解答下列问题:
(1)补全上面的条形统计图和扇形统计图;
(2)所抽取学生对数学学习喜欢程度的众数是 ,图②中所在扇形对应的圆心角是 ;
(3)若该校九年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?
21.(8分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(cos80°≈0.17,sin80°≈0.98,≈1.414)
(1)此时小强头部E点与地面DK相距多少?
(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?
22.(10分)计算:﹣22+(π﹣2018)0﹣2sin60°+|1﹣|
23.(12分)计算:(﹣1)2018﹣2+|1﹣|+3tan30°.
24.近年来,新能源汽车以其舒适环保、节能经济的优势受到热捧,随之而来的就是新能汽车销量的急速增加,当前市场上新能漂汽车从动力上分纯电动和混合动力两种,从用途上又分为乘用式和商用式两种,据中国汽车工业协会提供的信息,2017年全年新能源乘用车的累计销量为57.9万辆,其中,纯电动乘用车销量为46.8万辆,混合动力乘用车销量为11.1万辆; 2017年全年新能源商用车的累计销量为19.8万辆,其中,纯电动商用车销量为18.4万辆,混合动力商用车销量为1.4万辆,请根据以上材料解答下列问题:
(1)请用统计表表示我国2017年新能源汽车各类车型销量情况;
(2)小颖根据上述信息,计算出2017年我国新能源各类车型总销量为77.7万辆,并绘制了“2017年我国新能源汽车四类车型销量比例”的扇形统计图,如图1,请你将该图补充完整(其中的百分数精确到0.1%);
(3)2017年我国新能源乘用车销量最高的十个城市排名情况如图2,请根据图2中信息写出这些城市新能源乘用车销售情况的特点(写出一条即可);
(4)数据显示,2018年1~3月的新能源乘用车总销量排行榜上位居前四的厂家是比亚迪、北汽、上汽、江准,参加社会实践的大学生小王想对其中两个厂家进行深入调研,他将四个完全相同的乒乓球进行编号(用“1,2,3,4”依次对应上述四个厂家),并将乒乓球放入不透明的袋子中搅匀,从中一次拿出两个乒乓球,根据乒乓球上的编号决定要调研的厂家.求小王恰好调研“比亚迪”和“江淮”这两个厂家的概率.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.
【详解】
解: 根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,
A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为,不符合题意;
B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,不符合题意;
C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为,不符合题意;
D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为,符合题意,
故选D.
【点睛】
本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.
2、A
【解析】
利用平行线的判定方法判断即可得到结果.
【详解】
∵∠1=∠2,
∴AB∥CD,选项A符合题意;
∵∠3=∠4,
∴AD∥BC,选项B不合题意;
∵∠D=∠5,
∴AD∥BC,选项C不合题意;
∵∠B+∠BAD=180°,
∴AD∥BC,选项D不合题意,
故选A.
【点睛】
此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.
3、B
【解析】
由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案.
【详解】
解:A、因为a=3>0,所以开口向上,错误;
B、顶点坐标是(1,2),正确;
C、当x>1时,y随x增大而增大,错误;
D、图象与y轴的交点坐标为(0,5),错误;
故选:B.
【点睛】
考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).
4、D
【解析】
根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.
【详解】
由题意可得:,
故选D.
【点睛】
本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.
5、A
【解析】
先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m的取值范围.
【详解】
由①得,x<m,
由②得,x>1,
又因为不等式组无解,
所以m≤1.
故选A.
【点睛】
此题的实质是考查不等式组的求法,求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.
6、C
【解析】
作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,
连接OA′,AA′.
∵点A与A′关于MN对称,点A是半圆上的一个三等分点,
∴∠A′ON=∠AON=60°,PA=PA′,
∵点B是弧AN∧的中点,
∴∠BON=30 °,
∴∠A′OB=∠A′ON+∠BON=90°,
又∵OA=OA′=1,
∴A′B=
∴PA+PB=PA′+PB=A′B=
故选:C.
7、B
【解析】
根据S△ABE=S矩形ABCD=1=•AE•BF,先求出AE,再求出BF即可.
【详解】
如图,连接BE.
∵四边形ABCD是矩形,
∴AB=CD=2,BC=AD=1,∠D=90°,
在Rt△ADE中,AE===,
∵S△ABE=S矩形ABCD=1=•AE•BF,
∴BF=.
故选:B.
【点睛】
本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.
8、B
【解析】
求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.
【详解】
解:∵AD⊥BC,BE⊥AC,
∴∠ADB=∠AEB=∠ADC=90°,
∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,
∵∠AFE=∠BFD,
∴∠EAF=∠FBD,
∵∠ADB=90°,∠ABC=45°,
∴∠BAD=45°=∠ABC,
∴AD=BD,
在△ADC和△BDF中 ,
∴△ADC≌△BDF,
∴DF=CD=4,
故选:B.
【点睛】
此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.
9、C
【解析】
连接AE,OD,OE.
∵AB是直径, ∴∠AEB=90°.
又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.
∵OA=OD.∴△AOD是等边三角形.∴∠A=60°.
又∵点E为BC的中点,∠AED=90°,∴AB=AC.
∴△ABC是等边三角形,
∴△EDC是等边三角形,且边长是△ABC边长的一半2,高是.
∴∠BOE=∠EOD=60°,∴和弦BE围成的部分的面积=和弦DE围成的部分的面积.
∴阴影部分的面积=.故选C.
10、B
【解析】
由概率公式可知摸出黑球的概率为,分析表格数据可知的值总是在0.5左右,据此可求解m值.
【详解】
解:分析表格数据可知的值总是在0.5左右,则由题意可得,解得m=10,
故选择B.
【点睛】
本题考查了概率公式的应用.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
试题分析:先进行二次根式的化简,然后合并,可得原式=2+=3.
12、
【解析】
因为以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交,圆心距满足关系式:|R-r|
连接OA、OD,过O点作ON⊥AE,OM⊥AF.
AN=AE=1,AM=AF=2,MD=AD-AM=3
∵四边形ABCD是矩形
∴∠BAD=∠ANO=∠AMO=90°,
∴四边形OMAN是矩形
∴OM=AN=1
∴OA=,OD=
∵以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交
∴
【点睛】
本题考查了圆与圆相交的条件,熟记圆与圆相交时圆的半径与圆心距的关系是关键.
13、
【解析】
过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正弦等于对边比斜边列式计算即可得解.
【详解】
如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,
∵∠CAD+∠ACD=90°,
∠BCE+∠ACD=90°,
∴∠CAD=∠BCE,
在等腰直角△ABC中,AC=BC,
在△ACD和△CBE中,
,
∴△ACD≌△CBE(AAS),
∴CD=BE=1,
∴AD=2,
∴AC=,
∴AB=AC=,
∴sinα=,
故答案为.
【点睛】
本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,正确添加辅助线构造出全等三角形是解题的关键.
14、(4033,)
【解析】
根据正六边形的特点,每6次翻转为一个循环组循环,用2018除以6,根据商和余数的情况确定出点B的位置,经过第2017次翻转之后,点B的位置不变,仍在x轴上,由A(﹣2,0),可得AB=2,即可求得点B离原点的距离为4032,所以经过2017次翻转之后,点B的坐标是(4032,0),经过2018次翻转之后,点B在B′位置(如图所示),则△BB′C为等边三角形,可求得BN=NC=1,B′N=,由此即可求得经过2018次翻转之后点B的坐标.
然后求出翻转前进的距离,过点C作CG⊥x于G,求出∠CBG=60°,然后求出CG、BG,再求出OG,然后写出点C的坐标即可.
【详解】
设2018次翻转之后,在B′点位置,
∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,
∴每6次翻转为一个循环组,
∵2018÷6=336余2,
∴经过2016次翻转为第336个循环,点B在初始状态时的位置,
而第2017次翻转之后,点B的位置不变,仍在x轴上,
∵A(﹣2,0),
∴AB=2,
∴点B离原点的距离=2×2016=4032,
∴经过2017次翻转之后,点B的坐标是(4032,0),
经过2018次翻转之后,点B在B′位置,则△BB′C为等边三角形,
此时BN=NC=1,B′N=,
故经过2018次翻转之后,点B的坐标是:(4033,).
故答案为(4033,).
【点睛】
本题考查的是正多边形和圆,涉及到坐标与图形变化-旋转,正六边形的性质,确定出最后点B所在的位置是解题的关键.
15、
【解析】
先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.
【详解】
如图,过点A作AF⊥BC于F,
在Rt△ABC中,∠B=45°,
∴BC=AB=2,BF=AF=AB=1,
∵两个同样大小的含45°角的三角尺,
∴AD=BC=2,
在Rt△ADF中,根据勾股定理得,DF==
∴CD=BF+DF-BC=1+-2=-1,
故答案为-1.
【点睛】
此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.
16、90°或30°.
【解析】
分两种情况讨论求解:顶角比底角大45°;顶角比底角小45°.
【详解】
设顶角为x度,则
当底角为x°﹣45°时,2(x°﹣45°)+x°=180°,
解得x=90°,
当底角为x°+45°时,2(x°+45°)+x°=180°,
解得x=30°,
∴顶角度数为90°或30°.
故答案为:90°或30°.
【点睛】
本题考查了等腰三角形的两个底角相等即分类讨论的数学思想,解答本题的关键是分顶角比底角大45°或顶角比底角小45°两种情况进行计算.
三、解答题(共8题,共72分)
17、(1)证明见解析(2)7/24(3)25/6
【解析】(1)证明:∵△BDC′由△BDC翻折而成,
∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE。
在△ABG≌△C′DG中,∵∠BAG=∠C,AB= C′D,∠ABG=∠AD C′,
∴△ABG≌△C′DG(ASA)。
(2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD。
设AG=x,则GB=1﹣x,
在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(1﹣x)2,解得x=。
∴。
(3)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD。∴HD=AD=4。
∵tan∠ABG=tan∠ADE=。∴EH=HD×=4×。
∵EF垂直平分AD,AB⊥AD,∴HF是△ABD的中位线。∴HF=AB=×6=3。
∴EF=EH+HF=。
(1)根据翻折变换的性质可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出结论。
(2)由(1)可知GD=GB,故AG+GB=AD,设AG=x,则GB=1-x,在Rt△ABG中利用勾股定理即可求出AG的长,从而得出tan∠ABG的值。
(3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根据tan∠ABG的值即可得出EH的长,同理可得HF是△ABD的中位线,故可得出HF的长,由EF=EH+HF即可得出结果。
18、此时轮船所在的B处与灯塔P的距离是98海里.
【解析】
【分析】过点P作PC⊥AB,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB的长即可.
【详解】作PC⊥AB于C点,
∴∠APC=30°,∠BPC=45° ,AP=80(海里),
在Rt△APC中,cos∠APC=,
∴PC=PA•cos∠APC=40(海里),
在Rt△PCB中,cos∠BPC=,
∴PB==40≈98(海里),
答:此时轮船所在的B处与灯塔P的距离是98海里.
【点睛】本题考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题的关键.
19、(1);(2)他们获奖机会不相等,理由见解析.
【解析】
(1)根据正面有2张笑脸、2张哭脸,直接利用概率公式求解即可求得答案;(2)根据题意分别列出表格,然后由表格即可求得所有等可能的结果与获奖的情况,再利用概率公式求解即可求得他们获奖的概率.
【详解】
(1)∵有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,
∴获奖的概率是;
故答案为;
(2)他们获奖机会不相等,理由如下:
小芳:
笑1
笑2
哭1
哭2
笑1
笑1,笑1
笑2,笑1
哭1,笑1
哭2,笑1
笑2
笑1,笑2
笑2,笑2
哭1,笑2
哭2,笑2
哭1
笑1,哭1
笑2,哭1
哭1,哭1
哭2,哭1
哭2
笑1,哭2
笑2,哭2
哭1,哭2
哭2,哭2
∵共有16种等可能的结果,翻开的两张纸牌中只要出现笑脸的有12种情况,
∴P(小芳获奖)=;
小明:
笑1
笑2
哭1
哭2
笑1
笑2,笑1
哭1,笑1
哭2,笑1
笑2
笑1,笑2
哭1,笑2
哭2,笑2
哭1
笑1,哭1
笑2,哭1
哭2,哭1
哭2
笑1,哭2
笑2,哭2
哭1,哭2
∵共有12种等可能的结果,翻开的两张纸牌中只要出现笑脸的有10种情况,
∴P(小明获奖)=,
∵P(小芳获奖)≠P(小明获奖),
∴他们获奖的机会不相等.
【点睛】
本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
20、(1)答案见解析;(2)B,54°;(3)240人.
【解析】
(1)根据D程度的人数和所占抽查总人数的百分率即可求出抽查总人数,然后利用总人数减去A、B、D程度的人数即可求出C程度的人数,然后分别计算出各程度人数占抽查总人数的百分率,从而补全统计图即可;
(2)根据众数的定义即可得出结论,然后利用360°乘A程度的人数所占抽查总人数的百分率即可得出结论;
(3)利用960乘C程度的人数所占抽查总人数的百分率即可.
【详解】
解:(1)被调查的学生总人数为人,
C程度的人数为人,
则的百分比为、的百分比为、的百分比为,
补全图形如下:
(2)所抽取学生对数学学习喜欢程度的众数是、图②中所在扇形对应的圆心角是.
故答案为:;;
(3)该年级学生中对数学学习“不太喜欢”的有人
答:该年级学生中对数学学习“不太喜欢”的有240人.
【点睛】
此题考查的是条形统计图和扇形统计图,结合条形统计图和扇形统计图得出有用信息是解决此题的关键.
21、 (1) 小强的头部点E与地面DK的距离约为144.5 cm.(2) 他应向前9.5 cm.
【解析】
试题分析:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.求出MF、FN的值即可解决问题;
(2)求出OH、PH的值即可判断;
试题解析:解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.
∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66cos45°=≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm.
(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66sin45°≈46.53,∴PH≈46.53,∵GN=100cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他应向前9.5cm.
22、-4
【解析】
分析:第一项根据乘方的意义计算,第二项非零数的零次幂等于1,第三项根据特殊角锐角三角函数值计算,第四项根据绝对值的意义化简.
详解:原式=-4+1-2×+-1=-4
点睛:本题考查了实数的运算,熟练掌握乘方的意义,零指数幂的意义,及特殊角锐角三角函数,绝对值的意义是解答本题的关键.
23、﹣6+2
【解析】
分析:直接利用二次根式的性质以及绝对值的性质和特殊角的三角函数值分别化简求出答案.
详解:原式=1﹣6+﹣1+3×
=﹣5+﹣1+
=﹣6+2.
点睛:此题主要考查了实数运算,正确化简各数是解题关键.
24、(1)统计表见解析;(2)补全图形见解析;(3)总销量越高,其个人购买量越大;
(4).
【解析】
(1)认真读题,找到题目中的相关信息量,列表统计即可;
(2)分别求出“混动乘用”和“纯电动商用”的圆心角的度数,然后补扇形图即可;
(3)根据图表信息写出一个符合条件的信息即可;
(4)利用树状图确定求解概率.
【详解】
(1)统计表如下:
2017年新能源汽车各类型车型销量情况(单位:万辆)
类型
纯电动
混合动力
总计
新能源乘用车
46.8
11.1
57.9
新能源商用车
18.4
1.4
19.8
(2)混动乘用:×100%≈14.3%,14.3%×360°≈51.5°,
纯电动商用:×100%≈23.7%,23.7%×360°≈85.3°,
补全图形如下:
(3)总销量越高,其个人购买量越大.
(4)画树状图如下:
∵一共有12种等可能的情况数,其中抽中1、4的情况有2种,
∴小王恰好调研“比亚迪”和“江淮”这两个厂家的概率为=.
【点睛】
此题主要考查了数据的分析,利用统计表和扇形统计图表示数据的关系,以及用列表法或树状图法求概率,难度一般,注意认真阅读题目信息是关键.
广东省揭阳市空港区2022年中考数学五模试卷含解析: 这是一份广东省揭阳市空港区2022年中考数学五模试卷含解析,共21页。试卷主要包含了下列各式中计算正确的是等内容,欢迎下载使用。
2022年广东省揭阳市惠来县重点达标名校中考数学最后一模试卷含解析: 这是一份2022年广东省揭阳市惠来县重点达标名校中考数学最后一模试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,﹣23的相反数是等内容,欢迎下载使用。
2022年广东省揭阳市惠来县重点达标名校中考数学四模试卷含解析: 这是一份2022年广东省揭阳市惠来县重点达标名校中考数学四模试卷含解析,共18页。试卷主要包含了下列各数中,比﹣1大1的是,下面的几何体中,主等内容,欢迎下载使用。