|试卷下载
搜索
    上传资料 赚现金
    广东省恩平市重点名校2022年十校联考最后数学试题含解析
    立即下载
    加入资料篮
    广东省恩平市重点名校2022年十校联考最后数学试题含解析01
    广东省恩平市重点名校2022年十校联考最后数学试题含解析02
    广东省恩平市重点名校2022年十校联考最后数学试题含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省恩平市重点名校2022年十校联考最后数学试题含解析

    展开
    这是一份广东省恩平市重点名校2022年十校联考最后数学试题含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,若2<<3,则a的值可以是,下列计算正确的有个等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,在下列条件中,不能判定直线a与b平行的是( )

    A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°
    2.二次函数y=3(x﹣1)2+2,下列说法正确的是(  )
    A.图象的开口向下
    B.图象的顶点坐标是(1,2)
    C.当x>1时,y随x的增大而减小
    D.图象与y轴的交点坐标为(0,2)
    3.已知地球上海洋面积约为361 000 000km2,361 000 000这个数用科学记数法可表示为( )
    A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×109
    4.如图,将绕直角顶点顺时针旋转,得到,连接,若,则的度数是( )

    A. B. C. D.
    5.如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为(  )

    A.3 B.4﹣ C.4 D.6﹣2
    6.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为(  )

    A.(,) B.(2,) C.(,) D.(,3﹣)
    7.若2<<3,则a的值可以是(  )
    A.﹣7 B. C. D.12
    8.已知一元二次方程x2-8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为( )
    A.13 B.11或13 C.11 D.12
    9.下列计算正确的有( )个
    ①(﹣2a2)3=﹣6a6 ②(x﹣2)(x+3)=x2﹣6 ③(x﹣2)2=x2﹣4 ④﹣2m3+m3=﹣m3 ⑤﹣16=﹣1.
    A.0 B.1 C.2 D.3
    10.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中 5 个黑球, 从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋 中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:
    摸球试验次数
    100
    1000
    5000
    10000
    50000
    100000
    摸出黑球次数
    46
    487
    2506
    5008
    24996
    50007
    根据列表,可以估计出 m 的值是( )
    A.5 B.10 C.15 D.20
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.8的算术平方根是_____.
    12.观察如图中的数列排放顺序,根据其规律猜想:第10行第8个数应该是_____.

    13.如图,Rt△ABC中,∠BAC=90°,AB=3,AC=6,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为_____.

    14.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=   度.

    15.如图,某数学兴趣小组为了测量河对岸l1的两棵古树A、B之间的距离,他们在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则古树A、B之间的距离为_____m.

    16.如图,在每个小正方形的边长为1的网格中,点O,A,B,M均在格点上,P为线段OM上的一个动点.
    (1)OM的长等于_______;
    (2)当点P在线段OM上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的.

    三、解答题(共8题,共72分)
    17.(8分)如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.

    18.(8分)如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(4,6),点P为线段OA上一动点(与点O、A不重合),连接CP,过点P作PE⊥CP交AB于点D,且PE=PC,过点P作PF⊥OP且PF=PO(点F在第一象限),连结FD、BE、BF,设OP=t.

    (1)直接写出点E的坐标(用含t的代数式表示):   ;
    (2)四边形BFDE的面积记为S,当t为何值时,S有最小值,并求出最小值;
    (3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.
    19.(8分)如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与轴交于,两点,过作直线与轴负方向相交成的角,且交轴于点,以点为圆心的圆与轴相切于点.

    (1)求直线的解析式;
    (2)将以每秒1个单位的速度沿轴向左平移,当第一次与外切时,求平移的时间.
    20.(8分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线A→D→C→B到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,∠A=45°,∠B=30°,桥DC和AB平行.
    (1)求桥DC与直线AB的距离;
    (2)现在从A地到达B地可比原来少走多少路程?
    (以上两问中的结果均精确到0.1km,参考数据:≈1.14,≈1.73)

    21.(8分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w元.求w与x之间的函数关系式.该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
    22.(10分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1; 以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.

    23.(12分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.
    请根据图中信息解答下列问题:求这天的温度y与时间x(0≤x≤24)的函数关系式;求恒温系统设定的恒定温度;若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?

    24. “C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    解:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意
    B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,
    C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,
    D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,
    故选C.
    【点睛】
    本题考查平行线的判定,难度不大.
    2、B
    【解析】
    由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案.
    【详解】
    解:A、因为a=3>0,所以开口向上,错误;
    B、顶点坐标是(1,2),正确;
    C、当x>1时,y随x增大而增大,错误;
    D、图象与y轴的交点坐标为(0,5),错误;
    故选:B.
    【点睛】
    考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).
    3、C
    【解析】
    分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.
    解答:解:将361 000 000用科学记数法表示为3.61×1.
    故选C.
    4、B
    【解析】
    根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,最后根据旋转的性质可得∠B=∠A′B′C.
    【详解】
    解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,
    ∴AC=A′C,
    ∴△ACA′是等腰直角三角形,
    ∴∠CAA′=45°,
    ∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,
    ∴∠B=∠A′B′C=65°.
    故选B.
    【点睛】
    本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.
    5、B
    【解析】
    分析:首先得到当点E旋转至y轴上时DE最小,然后分别求得AD、OE′的长,最后求得DE′的长即可.
    详解:如图,当点E旋转至y轴上时DE最小;

    ∵△ABC是等边三角形,D为BC的中点,
    ∴AD⊥BC
    ∵AB=BC=2
    ∴AD=AB•sin∠B=,
    ∵正六边形的边长等于其半径,正六边形的边长为2,
    ∴OE=OE′=2
    ∵点A的坐标为(0,6)
    ∴OA=6
    ∴DE′=OA-AD-OE′=4-
    故选B.
    点睛:本题考查了正多边形的计算及等边三角形的性质,解题的关键是从图形中整理出直角三角形.
    6、A
    【解析】
    解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,),∴AC=OB=,∠CAB=10°,∴BC=AC•tan10°=×=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴点D的坐标为(,).故选A.

    7、C
    【解析】
    根据已知条件得到4<a-2<9,由此求得a的取值范围,易得符合条件的选项.
    【详解】
    解:∵2<<3,
    ∴4<a-2<9,
    ∴6<a<1.
    又a-2≥0,即a≥2.
    ∴a的取值范围是6<a<1.
    观察选项,只有选项C符合题意.
    故选C.
    【点睛】
    考查了估算无理数的大小,估算无理数大小要用夹逼法.
    8、B
    【解析】
    试题解析:x2-8x+15=0,
    分解因式得:(x-3)(x-5)=0,
    可得x-3=0或x-5=0,
    解得:x1=3,x2=5,
    若3为底边,5为腰时,三边长分别为3,5,5,周长为3+5+5=1;
    若3为腰,5为底边时,三边长分别为3,3,5,周长为3+3+5=11,
    综上,△ABC的周长为11或1.
    故选B.
    考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.
    9、C
    【解析】
    根据积的乘方法则,多项式乘多项式的计算法则,完全平方公式,合并同类项的计算法则,乘方的定义计算即可求解.
    【详解】
    ①(﹣2a2)3=﹣8a6,错误;
    ②(x﹣2)(x+3)=x2+x﹣6,错误;
    ③(x﹣2)2=x2﹣4x+4,错误
    ④﹣2m3+m3=﹣m3,正确;
    ⑤﹣16=﹣1,正确.
    计算正确的有2个.
    故选C.
    【点睛】
    考查了积的乘方,多项式乘多项式,完全平方公式,合并同类项,乘方,关键是熟练掌握计算法则正确进行计算.
    10、B
    【解析】
    由概率公式可知摸出黑球的概率为,分析表格数据可知的值总是在0.5左右,据此可求解m值.
    【详解】
    解:分析表格数据可知的值总是在0.5左右,则由题意可得,解得m=10,
    故选择B.
    【点睛】
    本题考查了概率公式的应用.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、2.
    【解析】
    试题分析:本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.依据算术平方根的定义回答即可.
    由算术平方根的定义可知:8的算术平方根是,
    ∵=2,
    ∴8的算术平方根是2.
    故答案为2.
    考点:算术平方根.
    12、1
    【解析】
    由n行有n个数,可得出第10行第8个数为第1个数,结合奇数为正偶数为负,即可求出结论.
    【详解】
    解:第1行1个数,第2行2个数,第3行3个数,…,
    ∴第9行9个数,
    ∴第10行第8个数为第1+2+3+…+9+8=1个数.
    又∵第2n﹣1个数为2n﹣1,第2n个数为﹣2n,
    ∴第10行第8个数应该是1.
    故答案为:1.
    【点睛】
    本题考查了规律型中数字的变化类,根据数的变化找出变化规律是解题的关键.
    13、
    【解析】
    【分析】如图,作A关于BC的对称点A',连接AA',交BC于F,过A'作AE⊥AC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长,根据相似三角形对应边的比可得结论.
    【详解】如图,作A关于BC的对称点A',连接AA',交BC于F,过A'作AE⊥AC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长;
    Rt△ABC中,∠BAC=90°,AB=3,AC=6,
    ∴BC==9,
    S△ABC=AB•AC=BC•AF,
    ∴3×6=9AF,
    AF=2,
    ∴AA'=2AF=4,
    ∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE,
    ∴∠A'=∠C,
    ∵∠AEA'=∠BAC=90°,
    ∴△AEA'∽△BAC,
    ∴,
    ∴,
    ∴A'E=,
    即AD+DE的最小值是,
    故答案为.

    【点睛】本题考查轴对称﹣最短问题、三角形相似的性质和判定、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题.
    14、360°.
    【解析】
    根据多边形的外角和等于360°解答即可.
    【详解】
    由多边形的外角和等于360°可知,
    ∠1+∠2+∠3+∠4+∠5=360°,
    故答案为360°.
    【点睛】
    本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.
    15、(50﹣).
    【解析】
    过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AM=BN.通过解直角△ACM和△BCN分别求得CM、CN的长度,则易得MN=AB.
    【详解】
    解:如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N,

    则AB=MN,AM=BN.
    在直角△ACM,∵∠ACM=45°,AM=50m,
    ∴CM=AM=50m.
    ∵在直角△BCN中,∠BCN=∠ACB+∠ACD=60°,BN=50m,
    ∴CN===(m),
    ∴MN=CM−CN=50−(m).
    则AB=MN=(50−)m.
    故答案是:(50−).
    【点睛】
    本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.
    16、(1)4;(2)见解析;
    【解析】
    解:(1)由勾股定理可得OM的长度
    (2)取格点 F , E, 连接 EF , 得到点 N ,取格点S, T, 连接ST, 得到点R, 连接NR交OM于P,则点P即为所求。
    【详解】
    (1)OM==4;
    故答案为4.
    (2)以点O为原点建立直角坐标系,则A(1,0),B(4,0),设P(a,a),(0≤a≤4),
    ∵PA2=(a﹣1)2+a2,PB2=(a﹣4)2+a2,
    ∴PA2+PB2=4(a﹣)2+,
    ∵0≤a≤4,
    ∴当a=时,PA2+PB2 取得最小值,
    综上,需作出点P满足线段OP的长=;
    取格点F,E,连接EF,得到点N,取格点S,T,连接ST,得到点R,连接NR交OM于P,
    则点P即为所求.
    【点睛】(1) 根据勾股定理即可得到结论;
    (2) 取格点F, E, 连接EF, 得到点N, 取格点S, T,连接ST, 得到点R, 连接NR即可得到结果.

    三、解答题(共8题,共72分)
    17、见解析
    【解析】
    根据平行四边形性质得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根据平行四边形的判定推出四边形AECF是平行四边形,即可得出结论.
    【详解】
    证明:∵四边形ABCD是平行四边形,
    ∴AD∥BC,且AD=BC,
    ∴AF∥EC,
    ∵BE=DF,
    ∴AF=EC,
    ∴四边形AECF是平行四边形,
    ∴AE=CF.
    【点睛】
    本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.
    18、 (1)、(t+6,t);(2)、当t=2时,S有最小值是16;(3)、理由见解析.
    【解析】
    (1)如图所示,过点E作EG⊥x轴于点G,则∠COP=∠PGE=90°,
    由题意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,
    ∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,
    又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,
    在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),
    ∴CO=PG=6、OP=EG=t,则OG=OP+PG=6+t,则点E的坐标为(t+6,t),
    (2)∵DA∥EG,∴△PAD∽△PGE,∴,∴,
    ∴AD=t(4﹣t),
    ∴BD=AB﹣AD=6﹣t(4﹣t)=t2﹣t+6,
    ∵EG⊥x轴、FP⊥x轴,且EG=FP,
    ∴四边形EGPF为矩形,∴EF⊥BD,EF=PG,
    ∴S四边形BEDF=S△BDF+S△BDE=×BD×EF=×(t2﹣t+6)×6=(t﹣2)2+16,
    ∴当t=2时,S有最小值是16;
    (3)①假设∠FBD为直角,则点F在直线BC上,
    ∵PF=OP<AB,
    ∴点F不可能在BC上,即∠FBD不可能为直角;
    ②假设∠FDB为直角,则点D在EF上,
    ∵点D在矩形的对角线PE上,
    ∴点D不可能在EF上,即∠FDB不可能为直角;
    ③假设∠BFD为直角且FB=FD,则∠FBD=∠FDB=45°,
    如图2,作FH⊥BD于点H,
    则FH=PA,即4﹣t=6﹣t,方程无解,
    ∴假设不成立,即△BDF不可能是等腰直角三角形.

    19、(1)直线的解析式为:.(2)平移的时间为5秒.
    【解析】
    (1)求直线的解析式,可以先求出A、C两点的坐标,就可以根据待定系数法求出函数的解析式.
    (2)设⊙O2平移t秒后到⊙O3处与⊙O1第一次外切于点P,⊙O3与x轴相切于D1点,连接O1O3,O3D1.
    在直角△O1O3D1中,根据勾股定理,就可以求出O1D1,进而求出D1D的长,得到平移的时间.
    【详解】
    (1)由题意得,
    ∴点坐标为.
    ∵在中,,

    ∴点的坐标为.
    设直线的解析式为,
    由过、两点,
    得,
    解得,
    ∴直线的解析式为:.
    (2)如图,

    设平移秒后到处与第一次外切于点,
    与轴相切于点,连接,.
    则,
    ∵轴,∴,
    在中,.
    ∵,
    ∴,
    ∴(秒),
    ∴平移的时间为5秒.
    【点睛】
    本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.
    20、(1)桥DC与直线AB的距离是6.0km;(2)现在从A地到达B地可比原来少走的路程是4.1km.
    【解析】
    (1)过C向AB作垂线构建三角形,求出垂线段的长度即可;(2)过点D向AB作垂线,然后根据解三角形求出AD, CB的长,进而求出现在从A地到达B地可比原来少走的路程.
    【详解】
    解:(1)作CH⊥AB于点H,如图所示,

    ∵BC=12km,∠B=30°,
    ∴km,BH=km,
    即桥DC与直线AB的距离是6.0km;
    (2)作DM⊥AB于点M,如图所示,

    ∵桥DC和AB平行,CH=6km,
    ∴DM=CH=6km,
    ∵∠DMA=90°,∠B=45°,MH=EF=DC,
    ∴AD=km,AM=DM=6km,
    ∴现在从A地到达B地可比原来少走的路程是:(AD+DC+BC)﹣(AM+MH+BH)=AD+DC+BC﹣AM﹣MH﹣BH=AD+BC﹣AM﹣BH=km,
    即现在从A地到达B地可比原来少走的路程是4.1km.
    【点睛】
    做辅助线,构建直角三角形,根据边角关系解三角形,是解答本题的关键.
    21、 (1);
    (2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元;
    (3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元.
    【解析】
    (1)根据销售额=销售量×销售价单x,列出函数关系式.
    (2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.
    (3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值.
    【详解】
    解:(1)由题意得:,
    ∴w与x的函数关系式为:.
    (2),
    ∵﹣2<0,∴当x=30时,w有最大值.w最大值为2.
    答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元.
    (3)当w=150时,可得方程﹣2(x﹣30)2+2=150,解得x1=25,x2=3.
    ∵3>28,∴x2=3不符合题意,应舍去.
    答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.
    22、(1)见解析(2)
    【解析】
    试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;
    (2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.
    试题解析:(1)如图所示:△A1B1C1,即为所求;
    (2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==,∴sin∠ACB===,即sin∠A2C2B2=.

    考点:作图﹣位似变换;作图﹣平移变换;解直角三角形.
    23、(1)y关于x的函数解析式为;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.
    【解析】
    分析:(1)应用待定系数法分段求函数解析式;
    (2)观察图象可得;
    (3)代入临界值y=10即可.
    详解:(1)设线段AB解析式为y=k1x+b(k≠0)
    ∵线段AB过点(0,10),(2,14)
    代入得
    解得
    ∴AB解析式为:y=2x+10(0≤x<5)
    ∵B在线段AB上当x=5时,y=20
    ∴B坐标为(5,20)
    ∴线段BC的解析式为:y=20(5≤x<10)
    设双曲线CD解析式为:y=(k2≠0)
    ∵C(10,20)
    ∴k2=200
    ∴双曲线CD解析式为:y=(10≤x≤24)
    ∴y关于x的函数解析式为:
    (2)由(1)恒温系统设定恒温为20°C
    (3)把y=10代入y=中,解得,x=20
    ∴20-10=10
    答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.
    点睛:本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.
    24、线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.
    【解析】
    试题分析:在Rt△BED中可先求得BE的长,过C作CF⊥AE于点F,则可求得AF的长,从而可求得EF的长,即可求得CD的长.
    试题解析:∵BN∥ED,
    ∴∠NBD=∠BDE=37°,
    ∵AE⊥DE,
    ∴∠E=90°,
    ∴BE=DE•tan∠BDE≈18.75(cm),
    如图,过C作AE的垂线,垂足为F,

    ∵∠FCA=∠CAM=45°,
    ∴AF=FC=25cm,
    ∵CD∥AE,
    ∴四边形CDEF为矩形,
    ∴CD=EF,
    ∵AE=AB+EB=35.75(cm),
    ∴CD=EF=AE-AF≈10.8(cm),
    答:线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.
    【点睛】本题考查了解直角三角形的应用,正确地添加辅助线构造直角三角形是解题的关键.

    相关试卷

    2022年广东省莲下重点名校十校联考最后数学试题含解析: 这是一份2022年广东省莲下重点名校十校联考最后数学试题含解析,共21页。试卷主要包含了下列计算正确的是,实数﹣5.22的绝对值是,关于x的一元二次方程等内容,欢迎下载使用。

    2022届云南弥勒市重点名校十校联考最后数学试题含解析: 这是一份2022届云南弥勒市重点名校十校联考最后数学试题含解析,共18页。

    2022届湖南邵阳市城区重点名校十校联考最后数学试题含解析: 这是一份2022届湖南邵阳市城区重点名校十校联考最后数学试题含解析,共25页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算,正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map