|试卷下载
终身会员
搜索
    上传资料 赚现金
    北京市中学国人民大附属中学2022年毕业升学考试模拟卷数学卷含解析
    立即下载
    加入资料篮
    北京市中学国人民大附属中学2022年毕业升学考试模拟卷数学卷含解析01
    北京市中学国人民大附属中学2022年毕业升学考试模拟卷数学卷含解析02
    北京市中学国人民大附属中学2022年毕业升学考试模拟卷数学卷含解析03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京市中学国人民大附属中学2022年毕业升学考试模拟卷数学卷含解析

    展开
    这是一份北京市中学国人民大附属中学2022年毕业升学考试模拟卷数学卷含解析,共27页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为(  )
    A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+3
    2.已知⊙O1与⊙O2的半径分别是3cm和5cm,两圆的圆心距为4cm,则两圆的位置关系是( )
    A.相交 B.内切 C.外离 D.内含
    3.二次函数y=-x2-4x+5的最大值是( )
    A.-7 B.5 C.0 D.9
    4.如图,已知直线,点E,F分别在、上,,如果∠B=40°,那么( )

    A.20° B.40° C.60° D.80°
    5.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是( )

    A.AE=6cm B.
    C.当0<t≤10时, D.当t=12s时,△PBQ是等腰三角形
    6.如图是某零件的示意图,它的俯视图是(  )

    A. B. C. D.
    7.如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时, 那么下列结论成立的是( ).

    A.线段EF的长逐渐增大 B.线段EF的长逐渐减少
    C.线段EF的长不变 D.线段EF的长不能确定
    8.下列运算正确的是(  )
    A.(a﹣3)2=a2﹣9 B.()﹣1=2 C.x+y=xy D.x6÷x2=x3
    9.根据《九章算术》的记载中国人最早使用负数,下列负数中最大的是( )
    A.-1 B.- C. D.–π
    10.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是(  )

    A. B. C. D.
    11.如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是( )

    A.四条边相等的四边形是菱形 B.一组邻边相等的平行四边形是菱形
    C.对角线互相垂直的平行四边形是菱形 D.对角线互相垂直平分的四边形是菱形
    12.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为(  )
    A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,四边形ABCD中,∠D=∠B=90°,AB=BC,CD=4,AC=8,设Q、R分别是AB、AD上的动点,则△CQR 的周长的最小值为_________ .

    14.如图,已知抛物线与坐标轴分别交于A,B,C三点,在抛物线上找到一点D,使得∠DCB=∠ACO,则D点坐标为____________________.

    15.如图,等边△ABC的边长为1cm,D、E分别是AB、AC边上的点,将△ADE沿直线DE折叠,点A落在点处,且点在△ABC的外部,则阴影部分图形的周长为_____cm.

    16.二次函数的图象与x轴有____个交点 .
    17.抛物线y=x2﹣2x+3的对称轴是直线_____.
    18.如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为    .

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA在x轴上,已知∠COD=∠OAB=90°,OC=,反比例函数y=的图象经过点B.求k的值.把△OCD沿射线OB移动,当点D落在y=图象上时,求点D经过的路径长.

    20.(6分)如图,已知点、在直线上,且,于点,且,以为直径在的左侧作半圆,于,且.
    若半圆上有一点,则的最大值为________;向右沿直线平移得到;
    ①如图,若截半圆的的长为,求的度数;
    ②当半圆与的边相切时,求平移距离.
    21.(6分)如图,在矩形ABCD中,对角线AC,BD相交于点O.
    (1)画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.
    (2)观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.

    22.(8分)如图,直角坐标系中,直线与反比例函数的图象交于A,B两点,已知A点的纵坐标是2.
    (1)求反比例函数的解析式.
    (2)将直线沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.

    23.(8分)在平面直角坐标系中,已知抛物线经过A(-3,0),B(0,-3),C(1,0)三点.
    (1)求抛物线的解析式;
    (2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S
    关于m的函数关系式,并求出S的最大值;
    (3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

    24.(10分)如图,在⊿中,,于, .
    ⑴.求的长;
    ⑵.求 的长.

    25.(10分)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。求文具袋和圆规的单价。学校准备购买文具袋20个,圆规若干,文具店给出两种优惠方案:
    方案一:购买一个文具袋还送1个圆规。
    方案二:购买圆规10个以上时,超出10个的部分按原价的八折优惠,文具袋不打折.
    ①设购买面规m个,则选择方案一的总费用为______,选择方案二的总费用为______.
    ②若学校购买圆规100个,则选择哪种方案更合算?请说明理由.
    26.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).
    (Ⅰ)求二次函数的解析式及点A,B的坐标;
    (Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;
    (Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.

    27.(12分)如图所示,点C为线段OB的中点,D为线段OA上一点.连结AC、BD交于点P.
    (问题引入)(1)如图1,若点P为AC的中点,求的值.
    温馨提示:过点C作CE∥AO交BD于点E.
    (探索研究)(2)如图2,点D为OA上的任意一点(不与点A、O重合),求证:.
    (问题解决)(3)如图2,若AO=BO,AO⊥BO,,求tan∠BPC的值.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    直接利用配方法将原式变形,进而利用平移规律得出答案.
    【详解】
    y=x2﹣6x+21
    =(x2﹣12x)+21
    =[(x﹣6)2﹣16]+21
    =(x﹣6)2+1,
    故y=(x﹣6)2+1,向左平移2个单位后,
    得到新抛物线的解析式为:y=(x﹣4)2+1.
    故选D.
    【点睛】
    本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键.
    2、A
    【解析】
    试题分析:∵⊙O1和⊙O2的半径分别为5cm和3cm,圆心距O1O2=4cm,5﹣3<4<5+3,
    ∴根据圆心距与半径之间的数量关系可知⊙O1与⊙O2相交.
    故选A.
    考点:圆与圆的位置关系.
    3、D
    【解析】
    直接利用配方法得出二次函数的顶点式进而得出答案.
    【详解】
    y=﹣x2﹣4x+5=﹣(x+2)2+9,
    即二次函数y=﹣x2﹣4x+5的最大值是9,
    故选D.
    【点睛】
    此题主要考查了二次函数的最值,正确配方是解题关键.
    4、C
    【解析】
    根据平行线的性质,可得的度数,再根据以及平行线的性质,即可得出的度数.
    【详解】
    ∵,,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    故选C.
    【点睛】
    本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等.
    5、D
    【解析】
    (1)结论A正确,理由如下:
    解析函数图象可知,BC=10cm,ED=4cm,
    故AE=AD﹣ED=BC﹣ED=10﹣4=6cm.
    (2)结论B正确,理由如下:
    如图,连接EC,过点E作EF⊥BC于点F,

    由函数图象可知,BC=BE=10cm,,
    ∴EF=1.∴.
    (3)结论C正确,理由如下:
    如图,过点P作PG⊥BQ于点G,

    ∵BQ=BP=t,∴.
    (4)结论D错误,理由如下:
    当t=12s时,点Q与点C重合,点P运动到ED的中点,
    设为N,如图,连接NB,NC.

    此时AN=1,ND=2,由勾股定理求得:NB=,NC=.
    ∵BC=10,
    ∴△BCN不是等腰三角形,即此时△PBQ不是等腰三角形.
    故选D.
    6、C
    【解析】
    物体的俯视图,即是从上面看物体得到的结果;根据三视图的定义,从上面看物体可以看到是一个正六边形,里面是一个没有圆心的圆,由此可以确定答案.
    【详解】
    从上面看是一个正六边形,里面是一个没有圆心的圆.
    故答案选C.
    【点睛】
    本题考查了几何体的三视图,解题的关键是熟练的掌握几何体三视图的定义.
    7、C
    【解析】
    因为R不动,所以AR不变.根据三角形中位线定理可得EF= AR,因此线段EF的长不变.
    【详解】
    如图,连接AR,

    ∵E、F分别是AP、RP的中点,
    ∴EF为△APR的中位线,
    ∴EF= AR,为定值.
    ∴线段EF的长不改变.
    故选:C.
    【点睛】
    本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
    8、B
    【解析】
    分析:根据完全平方公式、负整数指数幂,合并同类项以及同底数幂的除法的运算法则进行计算即可判断出结果.
    详解:A. (a﹣3)2=a2﹣6a+9,故该选项错误;
    B. ()﹣1=2,故该选项正确;
    C.x与y不是同类项,不能合并,故该选项错误;
    D. x6÷x2=x6-2=x4,故该选项错误.
    故选B.
    点睛:可不是主要考查了完全平方公式、负整数指数幂,合并同类项以及同度数幂的除法的运算,熟记它们的运算法则是解题的关键.
    9、B
    【解析】
    根据两个负数,绝对值大的反而小比较.
    【详解】
    解:∵− >−1>− >−π,
    ∴负数中最大的是−.
    故选:B.
    【点睛】
    本题考查了实数大小的比较,解题的关键是知道正数大于0,0大于负数,两个负数,绝对值大的反而小.
    10、A
    【解析】试题分析:几何体的主视图有2列,每列小正方形数目分别为2,1.
    故选A.
    考点:三视图
    视频
    11、A
    【解析】
    根据翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根据菱形的判定推出即可.
    【详解】
    ∵ 将 △ABC 延底边 BC 翻折得到 △DBC ,
    ∴AB=BD , AC=CD ,
    ∵AB=AC ,
    ∴AB=BD=CD=AC ,
    ∴ 四边形 ABDC 是菱形;
    故选A.
    【点睛】
    本题考查了菱形的判定方法:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;有一组邻边相等的平行四边形是菱形.
    12、A
    【解析】
    先将抛物线解析式化为顶点式,左加右减的原则即可.
    【详解】

    当向左平移2个单位长度,再向上平移3个单位长度,得
    .
    故选A.
    【点睛】
    本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    作C关于AB的对称点G,关于AD的对称点F,可得三角形CQR的周长=CQ+QR+CR=GQ+QR+RF≥GF.根据圆周角定理可得∠CDB=∠CAB=45°,∠CBD=∠CAD=30°,由于GF=2BD,在三角形CBD中,作CH⊥BD于H,可求BD的长,从而求出△CQR的周长的最小值.
    【详解】
    解:作C关于AB的对称点G,关于AD的对称点F,则三角形CQR的周长=CQ+QR+CR=GQ+QR+RF=GF,

    在Rt△ADC中,∵sin∠DAC=,
    ∴∠DAC=30°,
    ∵BA=BC,∠ABC=90°,
    ∴∠BAC=∠BCA=45°,
    ∵∠ADC=∠ABC=90°,
    ∴A,B,C,D四点共圆,
    ∴∠CDB=∠CAB=45°,∠CBD=∠CAD=30°
    在三角形CBD中,作CH⊥BD于H,
    BD=DH+BH=4×cos45°+×cos30°=,
    ∵CD=DF,CB=BG,
    ∴GF=2BD=,
    △CQR的周长的最小值为.
    【点睛】
    本题考查了轴对称问题,关键是根据轴对称的性质和两点之间线段最短解答.
    14、(,),(-4,-5)
    【解析】
    求出点A、B、C的坐标,当D在x轴下方时,设直线CD与x轴交于点E,由于∠DCB=∠ACO.所以tan∠DCB=tan∠ACO,从而可求出E的坐标,再求出CE的直线解析式,联立抛物线即可求出D的坐标,再由对称性即可求出D在x轴上方时的坐标.
    【详解】
    令y=0代入y=-x2-2x+3,
    ∴x=-3或x=1,
    ∴OA=1,OB=3,
    令x=0代入y=-x2-2x+3,
    ∴y=3,
    ∴OC=3,
    当点D在x轴下方时,
    ∴设直线CD与x轴交于点E,过点E作EG⊥CB于点G,
    ∵OB=OC,
    ∴∠CBO=45°,
    ∴BG=EG,OB=OC=3,
    ∴由勾股定理可知:BC=3,
    设EG=x,
    ∴CG=3-x,
    ∵∠DCB=∠ACO.
    ∴tan∠DCB=tan∠ACO=,
    ∴,
    ∴x=,
    ∴BE=x=,
    ∴OE=OB-BE=,
    ∴E(-,0),
    设CE的解析式为y=mx+n,交抛物线于点D2,
    把C(0,3)和E(-,0)代入y=mx+n,
    ∴,解得:.
    ∴直线CE的解析式为:y=2x+3,
    联立
    解得:x=-4或x=0,
    ∴D2的坐标为(-4,-5)
    设点E关于BC的对称点为F,
    连接FB,

    ∴∠FBC=45°,
    ∴FB⊥OB,
    ∴FB=BE=,
    ∴F(-3,)
    设CF的解析式为y=ax+b,
    把C(0,3)和(-3,)代入y=ax+b

    解得:,
    ∴直线CF的解析式为:y=x+3,
    联立
    解得:x=0或x=-
    ∴D1的坐标为(-,)
    故答案为(-,)或(-4,-5)
    【点睛】
    本题考查二次函数的综合问题,解题的关键是根据对称性求出相关点的坐标,利用直线解析式以及抛物线的解析式即可求出点D的坐标.
    15、3
    【解析】
    由折叠前后图形全等,可将阴影部分图形的周长转化为三角形周长.
    【详解】
    ∵△A'DE与△ADE关于直线DE对称,
    ∴AD=A'D,AE=A'E,
    C阴影=BC+A'D+A'E+BD+EC= BC+AD+AE+BD+EC =BC+AB+AC=3cm.
    故答案为3.
    【点睛】
    由图形轴对称可以得到对应的边相等、角相等.
    16、2
    【解析】
    【分析】根据一元二次方程x2+mx+m-2=0的根的判别式的符号进行判定二次函数y=x2+mx+m-2的图象与x轴交点的个数.
    【详解】二次函数y=x2+mx+m-2的图象与x轴交点的纵坐标是零,
    即当y=0时,x2+mx+m-2=0,
    ∵△=m2-4(m-2)=(m-2)2+4>0,
    ∴一元二次方程x2+mx+m-2=0有两个不相等是实数根,
    即二次函数y=x2+mx+m-2的图象与x轴有2个交点,
    故答案为:2.
    【点睛】本题考查了抛物线与x轴的交点.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.
    △=b2-4ac决定抛物线与x轴的交点个数.
    △=b2-4ac>0时,抛物线与x轴有2个交点;
    △=b2-4ac=0时,抛物线与x轴有1个交点;
    △=b2-4ac<0时,抛物线与x轴没有交点.
    17、x=1
    【解析】
    把解析式化为顶点式可求得答案.
    【详解】
    解:∵y=x2-2x+3=(x-1)2+2,
    ∴对称轴是直线x=1,
    故答案为x=1.
    【点睛】
    本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).
    18、7
    【解析】
    试题分析:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC.
    ∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.
    ∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.
    又∵∠B=∠C=60°,∴△ABD∽△DCE.
    ∴,即.
    ∴.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)k=2;(2)点D经过的路径长为.
    【解析】
    (1)根据题意求得点B的坐标,再代入求得k值即可;
    (2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M(如图),根据已知条件可求得点D的坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD′的长,即可得点D经过的路径长.
    【详解】
    (1)∵△AOB和△COD为全等三的等腰直角三角形,OC=,
    ∴AB=OA=OC=OD=,
    ∴点B坐标为(,),
    代入得k=2;
    (2)设平移后与反比例函数图象的交点为D′,
    由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M,如图,

    ∵OC=OD=,∠AOB=∠COM=45°,
    ∴OM=MC=MD=1,
    ∴D坐标为(﹣1,1),
    设D′横坐标为t,则OE=MF=t,
    ∴D′F=DF=t+1,
    ∴D′E=D′F+EF=t+2,
    ∴D′(t,t+2),
    ∵D′在反比例函数图象上,
    ∴t(t+2)=2,解得t=或t=﹣﹣1(舍去),
    ∴D′(﹣1, +1),
    ∴DD′=,
    即点D经过的路径长为.
    【点睛】
    本题是反比例函数与几何的综合题,求得点D′的坐标是解决第(2)问的关键.
    20、(1);(2)①;②
    【解析】
    (1)由图可知当点F与点D重合时,AF最大,根据勾股定理即可求出此时AF的长;
    (2)①连接EG、EH.根据的长为π可求得∠GEH=60°,可得△GEH是等边三角形,根据等边三角形的三个角都等于60°得出∠HGE=60°,可得EG//A'O,求得∠GEO=90°,得出△GEO是等腰直角三角形,求得∠EGO=45°,根据平角的定义即可求出∠A'GO的度数;
    ②分C'A'与半圆相切和B'A'与半圆相切两种情况进行讨论,利用切线的性质、勾股定理、切斜长定理等知识进行解答即可得出答案.
    【详解】
    解:
    (1)当点F与点D重合时,AF最大,
    AF最大=AD==,
    故答案为:;
    (2)①连接、.
    ∵,
    ∴.
    ∵,
    ∴是等边三角形,
    ∴.
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴.

    ②当切半圆于时,连接,则.
    ∵,
    ∴切半圆于点,
    ∴.
    ∵,
    ∴,
    ∴平移距离为.
    当切半圆于时,连接并延长于点,
    ∵,,,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴.
    ∵,
    ∴.

    【点睛】
    本题主要考查了弧长公式、勾股定理、切线的性质,作出过切点的半径构造出直角三角形是解决此题的关键.
    21、(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.
    【解析】
    (1)根据图形平移的性质画出平移后的△DEC即可;
    (2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.
    【详解】
    (1)如图所示;

    (2)四边形OCED是菱形.
    理由:∵△DEC由△AOB平移而成,
    ∴AC∥DE,BD∥CE,OA=DE,OB=CE,
    ∴四边形OCED是平行四边形.
    ∵四边形ABCD是矩形,
    ∴OA=OB,
    ∴DE=CE,
    ∴四边形OCED是菱形.
    【点睛】
    本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.
    22、(1);(2)P(0,6)
    【解析】
    试题分析:(1)先求得点A的坐标,再利用待定系数法求得反比例函数的解析式即可;(2)连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PC 试题解析:
    令一次函数中,则,
    解得:,即点A的坐标为(-4,2).
    ∵点A(-4,2)在反比例函数的图象上,
    ∴k=-4×2=-8,
    ∴反比例函数的表达式为.
    连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PC 设平移后直线于x轴交于点F,则F(6,0)
    设平移后的直线解析式为,
    将F(6,0)代入得:b=3
    ∴直线CF解析式:
    令3=,解得:,
    ∴C(-2,4)
    ∵A、C两点坐标分别为A(-4,2)、C(-2,4)
    ∴直线AC的表达式为,
    此时,P点坐标为P(0,6).
    点睛:本题是一次函数与反比例函数的综合题,主要考查了用待定系数法求函数的解析式、一次函数与反比例函数的交点坐标,熟练运用一次函数及反比例函数的性质是解题的关键.
    23、(1)
    时,S最大为
    (1)(-1,1)或或或(1,-1)
    【解析】
    试题分析:(1)先假设出函数解析式,利用三点法求解函数解析式.
    (2)设出M点的坐标,利用S=S△AOM+S△OBM﹣S△AOB即可进行解答;
    (1)当OB是平行四边形的边时,表示出PQ的长,再根据平行四边形的对边相等列出方程求解即可;当OB是对角线时,由图可知点A与P应该重合,即可得出结论.
    试题解析:解:(1)设此抛物线的函数解析式为:y=ax2+bx+c(a≠0),
    将A(-1,0),B(0,-1),C(1,0)三点代入函数解析式得:
    解得,所以此函数解析式为:.
    (2)∵M点的横坐标为m,且点M在这条抛物线上,∴M点的坐标为:(m,),
    ∴S=S△AOM+S△OBM-S△AOB=×1×(-)+×1×(-m)-×1×1=-(m+)2+,
    当m=-时,S有最大值为:S=-.
    (1)设P(x,).分两种情况讨论:
    ①当OB为边时,根据平行四边形的性质知PB∥OQ,
    ∴Q的横坐标的绝对值等于P的横坐标的绝对值,
    又∵直线的解析式为y=-x,则Q(x,-x).
    由PQ=OB,得:|-x-()|=1
    解得: x=0(不合题意,舍去),-1, ,∴Q的坐标为(-1,1)或或;
    ②当BO为对角线时,如图,知A与P应该重合,OP=1.四边形PBQO为平行四边形则BQ=OP=1,Q横坐标为1,代入y=﹣x得出Q为(1,﹣1).
    综上所述:Q的坐标为:(-1,1)或或或(1,-1).

    点睛:本题是对二次函数的综合考查,有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,综合性较强,但难度不大,仔细分析便不难求解.
    24、(1)25(2)12
    【解析】
    整体分析:
    (1)用勾股定理求斜边AB的长;(2)用三角形的面积等于底乘以高的一半求解.
    解:(1).∵在⊿中,,.
    ∴,
    (2).∵⊿,
    ∴即,
    ∴20×15=25CD.
    ∴.
    25、(1)文具袋的单价为15元,圆规单价为3元;(2)①方案一总费用为元,
    方案二总费用为元;②方案一更合算.
    【解析】
    (1)设文具袋的单价为x元/个,圆规的单价为y元/个,根据“购买1个文具袋和2个圆规需21元;购买2个文具袋和3个圆规需39元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
    (2)根据总价=单价×数量结合两种优惠方案,设购买面规m个,分别求出选择方案一和选择方案二所需费用,然后代入m=100计算比较后即可得出结论.
    【详解】
    (1)设文具袋的单价为x元,圆规单价为y元。
    由题意得解得
    答:文具袋的单价为15元,圆规单价为3元。
    (2)①设圆规m个,则方案一总费用为:元
    方案二总费用元
    故答案为:元;
    ②买圆规100个时,方案一总费用:元,
    方案二总费用:元,
    ∴方案一更合算。
    【点睛】
    本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
    26、(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q(,4);(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).
    【解析】
    (1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;
    (2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;
    (3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.
    【详解】
    (Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,
    ∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,
    令y=0,得到:x2﹣4x﹣5=0,
    解得x=﹣1或5,
    ∴A(﹣1,0),B(5,0).
    (Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).
    把点Q′坐标代入y=﹣x2+4x+5,
    得到:m2﹣4m﹣5=﹣m2﹣4m+5,
    ∴m=或(舍弃),
    ∴Q(,).
    (Ⅲ)如图,作MK⊥对称轴x=2于K.

    ①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.
    ∵此时点M的横坐标为1,
    ∴y=8,
    ∴M(1,8),N(2,13),
    ②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,
    此时M′的横坐标为3,可得M′(3,8),N′(2,3).
    【点睛】
    本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.
    27、(1);(2) 见解析;(3)
    【解析】
    (1)过点C作CE∥OA交BD于点E,即可得△BCE∽△BOD,根据相似三角形的性质可得,再证明△ECP≌△DAP,由此即可求得的值;(2)过点D作DF∥BO交AC于点F,即可得,,由点C为OB的中点可得BC=OC,即可证得;(3)由(2)可知=,设AD=t,则BO=AO=4t,OD=3t,根据勾股定理求得BD=5t,即可得PD=t,PB=4t,所以PD=AD,从而得∠A=∠APD=∠BPC,所以tan∠BPC=tan∠A=.
    【详解】
    (1)如图1,过点C作CE∥OA交BD于点E,

    ∴△BCE∽△BOD,
    ∴=,
    又BC=BO,∴CE=DO.
    ∵CE∥OA,∴∠ECP=∠DAP,
    又∠EPC=∠DPA,PA=PC,
    ∴△ECP≌△DAP,
    ∴AD=CE=DO,
    即 =;
    (2)如图2,过点D作DF∥BO交AC于点F,

    则 =, =.
    ∵点C为OB的中点,
    ∴BC=OC,
    ∴=;
    (3)如图2,∵=,
    由(2)可知==.
    设AD=t,则BO=AO=4t,OD=3t,
    ∵AO⊥BO,即∠AOB=90°,
    ∴BD==5t,
    ∴PD=t,PB=4t,
    ∴PD=AD,
    ∴∠A=∠APD=∠BPC,
    则tan∠BPC=tan∠A==.
    【点睛】
    本题考查了相似三角形的判定与性质,准确作出辅助线,构造相似三角形是解决本题的关键,也是求解的难点.

    相关试卷

    海南海口市琼山区国兴中学2021-2022学年毕业升学考试模拟卷数学卷含解析: 这是一份海南海口市琼山区国兴中学2021-2022学年毕业升学考试模拟卷数学卷含解析,共24页。试卷主要包含了估计﹣2的值应该在等内容,欢迎下载使用。

    北京市第八中学2021-2022学年毕业升学考试模拟卷数学卷含解析: 这是一份北京市第八中学2021-2022学年毕业升学考试模拟卷数学卷含解析,共23页。试卷主要包含了小手盖住的点的坐标可能为等内容,欢迎下载使用。

    2022年江苏省南京师范大附属中学毕业升学考试模拟卷数学卷含解析: 这是一份2022年江苏省南京师范大附属中学毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了下列各组数中,互为相反数的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map