北京顺义2022年中考数学模拟精编试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=( )
A.141° B.144° C.147° D.150°
2.若数a使关于x的不等式组有解且所有解都是2x+6>0的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是( )
A.5 B.4 C.3 D.2
3.下列运算正确的是( )
A. B.
C. D.
4.已知一次函数y=(k﹣2)x+k不经过第三象限,则k的取值范围是( )
A.k≠2 B.k>2 C.0<k<2 D.0≤k<2
5.下列实数中,无理数是( )
A.3.14 B.1.01001 C. D.
6.在数轴上表示不等式2(1﹣x)<4的解集,正确的是( )
A. B.
C. D.
7.如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于点E,则阴影部分面积为( )
A.π B.π C.6﹣π D.2﹣π
8.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为( )
A.60 n mile B.60 n mile C.30 n mile D.30 n mile
9.如图是二次函数的部分图象,由图象可知不等式的解集是( )
A. B. C.且 D.x<-1或x>5
10.下列四个图形中,是中心对称图形的是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.正五边形的内角和等于______度.
12.化简__________.
13.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点 B,则△OAC 与△BAD 的面积之差 S△OAC﹣S△BAD 为_______.
14.若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为_____.
15.已知二次函数的图像与轴交点的横坐标是和,且,则________.
16.将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt△BCD沿射线BD方向平移,在平移的过程中,当点B的移动距离为 时,四边ABC1D1为矩形;当点B的移动距离为 时,四边形ABC1D1为菱形.
三、解答题(共8题,共72分)
17.(8分)某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:
(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.
(2)请将条形统计图补充完整.
(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.
18.(8分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.
(1)求新传送带AC的长度;
(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)
19.(8分)(1)解方程:.
(2)解不等式组:
20.(8分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.
(1)将上面的条形统计图补充完整;
(2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?
(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?
21.(8分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.
(1)求小明选择去白鹿原游玩的概率;
(2)用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.
22.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B 坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.求该反比例函数和一次函数的解析式;求△AOB的面积;点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.
23.(12分)先化简,再求值:,其中,.
24.如图,一次函数的图象与反比例函数的图象交于,B 两点.
(1)求一次函数与反比例函数的解析式;
(2)结合图形,直接写出一次函数大于反比例函数时自变量x的取值范围.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG的度数.
【详解】
(6﹣2)×180°÷6=120°,
(5﹣2)×180°÷5=108°,
∠APG=(6﹣2)×180°﹣120°×3﹣108°×2
=720°﹣360°﹣216°
=144°,
故选B.
【点睛】
本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数).
2、D
【解析】
由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.
【详解】
不等式组整理得:,
由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,
即-2<a≤4,即a=-1,0,1,2,3,4,
分式方程去分母得:5-y+3y-3=a,即y=,
由分式方程有整数解,得到a=0,2,共2个,
故选:D.
【点睛】
本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
3、D
【解析】
【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.
【详解】A. ,故A选项错误,不符合题意;
B. ,故B选项错误,不符合题意;
C. ,故C选项错误,不符合题意;
D. ,正确,符合题意,
故选D.
【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.
4、D
【解析】
直线不经过第三象限,则经过第二、四象限或第一、二、四象限,当经过第二、四象限时,函数为正比例函数,k=0
当经过第一、二、四象限时, ,解得0<k<2,
综上所述,0≤k<2。故选D
5、C
【解析】
先把能化简的数化简,然后根据无理数的定义逐一判断即可得.
【详解】
A、3.14是有理数;
B、1.01001是有理数;
C、是无理数;
D、是分数,为有理数;
故选C.
【点睛】
本题主要考查无理数的定义,属于简单题.
6、A
【解析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1– x)<4
去括号得:2﹣2x<4
移项得:2x>﹣2,
系数化为1得:x>﹣1,
故选A.
“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
7、C
【解析】
根据题意作出合适的辅助线,可知阴影部分的面积是△BCD的面积减去△BOE和扇形OEC的面积.
【详解】
由题意可得,
BC=CD=4,∠DCB=90°,
连接OE,则OE=BC,
∴OE∥DC,
∴∠EOB=∠DCB=90°,
∴阴影部分面积为:
=
=6-π,
故选C.
【点睛】
本题考查扇形面积的计算、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
8、B
【解析】
如图,作PE⊥AB于E.
在Rt△PAE中,∵∠PAE=45°,PA=60n mile,
∴PE=AE=×60=n mile,
在Rt△PBE中,∵∠B=30°,
∴PB=2PE=n mile.
故选B.
9、D
【解析】
利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出的解集:
由图象得:对称轴是x=2,其中一个点的坐标为(1,0),
∴图象与x轴的另一个交点坐标为(-1,0).
由图象可知:的解集即是y<0的解集,
∴x<-1或x>1.故选D.
10、D
【解析】
试题分析:根据中心对称图形的定义,结合选项所给图形进行判断即可.
解:A、不是中心对称图形,故本选项错误;
B、不是中心对称图形,故本选项错误;
C、不是中心对称图形,故本选项错误;
D、是中心对称图形,故本选项正确;
故选D.
考点:中心对称图形.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、540
【解析】
过正五边形五个顶点,可以画三条对角线,把五边形分成3个三角形
∴正五边形的内角和=3180=540°
12、
【解析】
根据分式的运算法则先算括号里面,再作乘法亦可利用乘法对加法的分配律求解.
【详解】
解:法一、
=(- )
=
= 2-m.
故答案为:2-m.
法二、原式=
= =1-m+1
=2-m.
故答案为:2-m.
【点睛】
本题考查分式的加减和乘法,解决本题的关键是熟练运用运算法则或运算律.
13、
【解析】
设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图像可得出B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义即可求解.
【详解】
设△OAC和△BAD的直角边长分别为a、b,
则B点坐标为(a+b,a-b)
∵点B在反比例函数y=在第一象限的图象上,
∴(a+b)(a-b)=a2-b2=3
∴S△OAC﹣S△BAD=a2-b2=
【点睛】
此题主要考查等腰直角三角形的面积求法和反比例函数k值的定义,解题的关键是熟知等腰直角三角形的性质及反比例函数k值的性质.
14、5
【解析】
由题意得, ,.
∴原式
15、-12
【解析】
令y=0,得方程,和即为方程的两根,利用根与系数的关系求得和,利用完全平方式并结合即可求得k的值.
【详解】
解:∵二次函数的图像与轴交点的横坐标是和,
令y=0,得方程,
则和即为方程的两根,
∴,,
∵,
两边平方得:,
∴,
即,解得:,
故答案为:.
【点睛】
本题考查了一元二次方程与二次函数的关系,函数与x轴的交点的横坐标就是方程的根,解题的关键是利用根与系数的关系,整体代入求解.
16、,.
【解析】
试题分析:当点B的移动距离为时,∠C1BB1=60°,则∠ABC1=90°,根据有一直角的平行四边形是矩形,可判定四边形ABC1D1为矩形;当点B的移动距离为时,D、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定四边形ABC1D1为菱形.
试题解析:如图:
当四边形ABC1D是矩形时,∠B1BC1=90°﹣30°=60°,
∵B1C1=1,
∴BB1=,
当点B的移动距离为时,四边形ABC1D1为矩形;
当四边形ABC1D是菱形时,∠ABD1=∠C1BD1=30°,
∵B1C1=1,
∴BB1=,
当点B的移动距离为时,四边形ABC1D1为菱形.
考点:1.菱形的判定;2.矩形的判定;3.平移的性质.
三、解答题(共8题,共72分)
17、(1)5,20,80;(2)图见解析;(3).
【解析】
【分析】(1)根据喜欢跳绳的人数以及所占的比例求得总人数,然后用总人数减去喜欢跳绳、乒乓球、其它的人数即可得;
(2)用乒乓球的人数除以总人数即可得;
(3)用800乘以喜欢篮球人数所占的比例即可得;
(4)根据(1)中求得的喜欢篮球的人数即可补全条形图;
(5)画树状图可得所有可能的情况,根据树状图求得2名同学恰好是1名女同学和1名男同学的结果,根据概率公式进行计算即可.
【详解】(1)调查的总人数为20÷40%=50(人),
喜欢篮球项目的同学的人数=50﹣20﹣10﹣15=5(人);
(2)“乒乓球”的百分比==20%;
(3)800×=80,
所以估计全校学生中有80人喜欢篮球项目;
(4)如图所示,
(5)画树状图为:
共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果数为12,所以所抽取的2名同学恰好是1名女同学和1名男同学的概率=.
18、(1)5.6
(2)货物MNQP应挪走,理由见解析.
【解析】
(1)如图,作AD⊥BC于点D
Rt△ABD中,
AD=ABsin45°=4
在Rt△ACD中,∵∠ACD=30°
∴AC=2AD=4
即新传送带AC的长度约为5.6米.
(2)结论:货物MNQP应挪走.
在Rt△ABD中,BD=ABcos45°=4
在Rt△ACD中,CD=ACcos30°=
∴CB=CD—BD=
∵PC=PB—CB ≈4—2.1=1.9<2
∴货物MNQP应挪走.
19、(1)无解;(1)﹣1<x≤1.
【解析】
(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;
(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.
【详解】
(1)去分母得:1﹣x+1=﹣3x+6,
解得:x=1,
经检验x=1是增根,分式方程无解;
(1),
由①得:x>﹣1,
由②得:x≤1,
则不等式组的解集为﹣1<x≤1.
【点睛】
此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
20、(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.
【解析】
(1)根据诚信的人数和所占的百分比求出抽取的总人数,用总人数乘以友善所占的百分比,即可补全统计图;
(2)用360°乘以爱国所占的百分比,即可求出圆心角的度数;
(3)用该校七年级的总人数乘以“友善”所占的百分比,即可得出答案.
【详解】
解:(1)本次调查共抽取的学生有(名)
选择“友善”的人数有(名)
∴条形统计图如图所示:
(2)∵选择“爱国”主题所对应的百分比为,
∴选择“爱国”主题所对应的圆心角是;
(3)该校七年级共有1200名学生,估计选择以“友善”为主题的七年级学生有名.
故答案为:(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.
【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
21、(1);(2)
【解析】
(1)利用概率公式直接计算即可;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.
【详解】
(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,
∴小明选择去白鹿原游玩的概率=;
(2)画树状图分析如下:
两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,
所以小明和小华都选择去秦岭国家植物园游玩的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
22、(1)y=﹣,y=﹣x+2;(2)6;(3)当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.
【解析】
(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;
(2)利用一次函数解析式求得C(4,0),即OC=4,即可得出△AOB的面积=×4×3=6;
(3)分类讨论:当AO为等腰三角形腰与底时,求出点E坐标即可.
【详解】
(1)如图,在Rt△OAD中,∠ADO=90°,
∵tan∠AOD=,AD=3,
∴OD=2,
∴A(﹣2,3),
把A(﹣2,3)代入y=,考点:n=3×(﹣2)=﹣6,
所以反比例函数解析式为:y=﹣,
把B(m,﹣1)代入y=﹣,得:m=6,
把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:,
解得:,
所以一次函数解析式为:y=﹣x+2;
(2)当y=0时,﹣ x+2=0,
解得:x=4,
则C(4,0),
所以;
(3)当OE3=OE2=AO=,即E2(﹣,0),E3(,0);
当OA=AE1=时,得到OE1=2OD=4,即E1(﹣4,0);
当AE4=OE4时,由A(﹣2,3),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1,1.5),
令y=0,得到y=﹣,即E4(﹣,0),
综上,当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.
【点睛】
本题考查了反比例函数与一次函数的交点问题,熟练掌握各自的性质是解题的关键.
23、9
【解析】
根据完全平方公式、平方差公式、单项式乘多项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.
【详解】
当,时,
原式
【点睛】
本题考查整式的化简求值,解答本题的关键是明确整式化简求值的方法.
24、(1);;(2)或;
【解析】
(1)利用点A的坐标可求出反比例函数解析式,再把B(4,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;
(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数时自变量x的取值范围.
【详解】
(1) 过点,
,
反比例函数的解析式为;
点在 上,
,
,
一次函数过点,
,
解得:.
一次函数解析式为;
(2)由图可知,当或时,一次函数值大于反比例函数值.
【点睛】
本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式.
北京市景山校2022年中考数学模拟精编试卷含解析: 这是一份北京市景山校2022年中考数学模拟精编试卷含解析,共21页。
北京三帆中学2021-2022学年中考数学模拟精编试卷含解析: 这是一份北京三帆中学2021-2022学年中考数学模拟精编试卷含解析,共18页。试卷主要包含了3的倒数是,的绝对值是等内容,欢迎下载使用。
2022年北京临川校中考数学模拟精编试卷含解析: 这是一份2022年北京临川校中考数学模拟精编试卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,将一副三角板,计算÷的结果是,的值是,如图,直线与y轴交于点,已知某几何体的三视图等内容,欢迎下载使用。