安徽省阜阳市民族中学2021-2022学年中考二模数学试题含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(3,0),在y轴的正半轴上取一点C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是( )
A.(0,) B.(,0) C.(0,2) D.(2,0)
2.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有( )
A.1个 B.3个 C.4个 D.5个
3.菱形的两条对角线长分别是6cm和8cm,则它的面积是( )
A.6cm2 B.12cm2 C.24cm2 D.48cm2
4.下列运算不正确的是
A. B.
C. D.
5.若关于的方程的两根互为倒数,则的值为( )
A. B.1 C.-1 D.0
6.对于下列调查:①对从某国进口的香蕉进行检验检疫;②审查某教科书稿;③中央电视台“鸡年春晚”收视率.其中适合抽样调查的是( )
A.①② B.①③ C.②③ D.①②③
7.“射击运动员射击一次,命中靶心”这个事件是( )
A.确定事件 B.必然事件 C.不可能事件 D.不确定事件
8.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )
A. B.
C. D.
9.2014 年底,国务院召开了全国青少年校园足球工作会议,明确由教育部正式牵头负 责校园足球工作.2018 年 2 月 1 日,教育部第三场新春系列发布会上,王登峰司长总 结前三年的工作时提到:校园足球场地,目前全国校园里面有 5 万多块,到 2020 年 要达到 85000 块.其中 85000 用科学记数法可表示为( )
A.0.85 ´ 105 B.8.5 ´ 104 C.85 ´ 10-3 D.8.5 ´ 10-4
10.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于( )
A.42° B.28° C.21° D.20°
11.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G,下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE=S△CEF,其中正确的是( )
A.①③ B.②④ C.①③④ D.②③④
12.在实数﹣ ,0.21, ,, ,0.20202中,无理数的个数为( )
A.1 B.2 C.3 D.4
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.若x2+kx+81是完全平方式,则k的值应是________.
14.如图,在3×3的正方形网格中,点A,B,C,D,E,F,G都是格点,从C,D,E,F,G五个点中任意取一点,以所取点及AB为顶点画三角形,所画三角形时等腰三角形的概率是_____.
15.计算:×(﹣2)=___________.
16.株洲市城区参加2018年初中毕业会考的人数约为10600人,则数10600用科学记数法表示为_____.
17.已知圆锥的底面半径为3cm,侧面积为15πcm2,则这个圆锥的侧面展开图的圆心角 °.
18.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台电冰箱的进价比每台空调的进价多300元,商场用9000元购进电冰箱的数量与用7200元购进空调数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售利润为Y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16200元,请分析合理的方案共有多少种?
(3)实际进货时,厂家对电冰箱出厂价下调K(0<K<150)元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案.
20.(6分)为了弘扬学生爱国主义精神,充分展现新时期青少年良好的思想道德素质和精神风貌,丰富学生的校园生活,陶冶师生的情操,某校举办了“中国梦•爱国情•成才志”中华经典诗文诵读比赛.九(1)班通过内部初选,选出了丽丽和张强两位同学,但学校规定每班只有1个名额,经过老师与同学们商量,用所学的概率知识设计摸球游戏决定谁去,设计的游戏规则如下:在A、B两个不透明的箱子分别放入黄色和白色两种除颜色外均相同的球,其中A箱中放置3个黄球和2个白球;B箱中放置1个黄球,3个白球,丽丽从A箱中摸一个球,张强从B箱摸一个球进行试验,若两人摸出的两球都是黄色,则丽丽去;若两人摸出的两球都是白色,则张强去;若两人摸出球颜色不一样,则放回重复以上动作,直到分出胜负为止.
根据以上规则回答下列问题:
(1)求一次性摸出一个黄球和一个白球的概率;
(2)判断该游戏是否公平?并说明理由.
21.(6分)观察下列等式:
第1个等式:a1=-1,
第2个等式:a2=,
第3个等式:a3==2-,
第4个等式:a4=-2,
…
按上述规律,回答以下问题:请写出第n个等式:an=__________.a1+a2+a3+…+an=_________.
22.(8分)如图,⊙O的直径AD长为6,AB是弦,CD∥AB,∠A=30°,且CD=.
(1)求∠C的度数;
(2)求证:BC是⊙O的切线.
23.(8分)已知关于x的方程x1+(1k﹣1)x+k1﹣1=0有两个实数根x1,x1.求实数k的取值范围; 若x1,x1满足x11+x11=16+x1x1,求实数k的值.
24.(10分)为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:
(1)本次调查的学生人数是 人;
(2)图2中α是 度,并将图1条形统计图补充完整;
(3)请估算该校九年级学生自主学习时间不少于1.5小时有 人;
(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.
25.(10分)某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?
26.(12分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据健民体育活动中心消费者的需求量,活动中心决定用不超过2550元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?
27.(12分)如图,已知的直径,是的弦,过点作的切线交的延长线于点,过点作,垂足为,与交于点,设,的度数分别是,,且.
(1)用含的代数式表示;
(2)连结交于点,若,求的长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
直接根据△AOC∽△COB得出OC2=OA•OB,即可求出OC的长,即可得出C点坐标.
【详解】
如图,连结AC,CB.
依△AOC∽△COB的结论可得:OC2=OA×OB,
即OC2=1×3=3,
解得:OC=或− (负数舍去),
故C点的坐标为(0, ).
故答案选:A.
【点睛】
本题考查了坐标与图形性质,解题的关键是熟练的掌握坐标与图形的性质.
2、B
【解析】
根据题意和函数的图像,可知抛物线的对称轴为直线x=-=1,即b=-4a,变形为4a+b=0,所以(1)正确;
由x=-3时,y>0,可得9a+3b+c>0,可得9a+c>-3c,故(1)正确;
因为抛物线与x轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a﹣3b+1c=7a+11a-5a=14a,由函数的图像开口向下,可知a<0,因此7a﹣3b+1c<0,故(3)不正确;
根据图像可知当x<1时,y随x增大而增大,当x>1时,y随x增大而减小,可知若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1=y3<y1,故(4)不正确;
根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<x1,故(5)正确.
正确的共有3个.
故选B.
点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax1+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b1﹣4ac>0时,抛物线与x轴有1个交点;△=b1﹣4ac=0时,抛物线与x轴有1个交点;△=b1﹣4ac<0时,抛物线与x轴没有交点.
3、C
【解析】
已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.
【详解】
根据对角线的长可以求得菱形的面积,
根据S=ab=×6cm×8cm=14cm1.
故选:C.
【点睛】
考查菱形的面积公式,熟练掌握菱形面积的两种计算方法是解题的关键.
4、B
【解析】
,B是错的,A、C、D运算是正确的,故选B
5、C
【解析】
根据已知和根与系数的关系得出k2=1,求出k的值,再根据原方程有两个实数根,即可求出符合题意的k的值.
【详解】
解:设、是的两根,
由题意得:,
由根与系数的关系得:,
∴k2=1,
解得k=1或−1,
∵方程有两个实数根,
则,
当k=1时,,
∴k=1不合题意,故舍去,
当k=−1时,,符合题意,
∴k=−1,
故答案为:−1.
【点睛】
本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.
6、B
【解析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
①对从某国进口的香蕉进行检验检疫适合抽样调查;
②审查某教科书稿适合全面调查;
③中央电视台“鸡年春晚”收视率适合抽样调查.
故选B.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
7、D
【解析】
试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,
故选D.
考点:随机事件.
8、D
【解析】
找到从左面看到的图形即可.
【详解】
从左面上看是D项的图形.故选D.
【点睛】
本题考查三视图的知识,左视图是从物体左面看到的视图.
9、B
【解析】
根据科学记数法的定义,科学记数法的表示形式为a×10 n ,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,等于这个数的整数位数减1.
【详解】
解:85000用科学记数法可表示为8.5×104,
故选:B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10、B
【解析】
利用OB=DE,OB=OD得到DO=DE,则∠E=∠DOE,根据三角形外角性质得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=∠AOC进行计算即可.
【详解】
解:连结OD,如图,
∵OB=DE,OB=OD,
∴DO=DE,
∴∠E=∠DOE,
∵∠1=∠DOE+∠E,
∴∠1=2∠E,
而OC=OD,
∴∠C=∠1,
∴∠C=2∠E,
∴∠AOC=∠C+∠E=3∠E,
∴∠E=∠AOC=×84°=28°.
故选:B.
【点睛】
本题考查了圆的认识:掌握与圆有关的概念( 弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.
11、C
【解析】
①通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,
②设BC=a,CE=y,由勾股定理就可以得出EF与x、y的关系,表示出BE与EF,即可判断BE+DF与EF关系不确定;
③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF为等边三角形,
④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和S△ABE,再通过比较大小就可以得出结论.
【详解】
①四边形ABCD是正方形,
∴AB═AD,∠B=∠D=90°.
在Rt△ABE和Rt△ADF中,
,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF
∵BC=CD,
∴BC-BE=CD-DF,即CE=CF,
∵AE=AF,
∴AC垂直平分EF.(故①正确).
②设BC=a,CE=y,
∴BE+DF=2(a-y)
EF=y,
∴BE+DF与EF关系不确定,只有当y=(2−)a时成立,(故②错误).
③当∠DAF=15°时,
∵Rt△ABE≌Rt△ADF,
∴∠DAF=∠BAE=15°,
∴∠EAF=90°-2×15°=60°,
又∵AE=AF
∴△AEF为等边三角形.(故③正确).
④当∠EAF=60°时,设EC=x,BE=y,由勾股定理就可以得出:
(x+y)2+y2=(x)2
∴x2=2y(x+y)
∵S△CEF=x2,S△ABE=y(x+y),
∴S△ABE=S△CEF.(故④正确).
综上所述,正确的有①③④,
故选C.
【点睛】
本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.
12、C
【解析】
在实数﹣,0.21, , , ,0.20202中,
根据无理数的定义可得其中无理数有﹣,,,共三个.
故选C.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、±1
【解析】
试题分析:利用完全平方公式的结构特征判断即可确定出k的值.
解:∵x2+kx+81是完全平方式,
∴k=±1.
故答案为±1.
考点:完全平方式.
14、.
【解析】
找出从C,D,E,F,G五个点中任意取一点组成等腰三角形的个数,再根据概率公式即可得出结论.
【详解】
∵从C,D,E,F,G五个点中任意取一点共有5种情况,其中A、B、C;A、B、F两种取法,可使这三定组成等腰三角形,
∴所画三角形时等腰三角形的概率是,
故答案是:.
【点睛】
考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.
15、-1
【解析】
根据“两数相乘,异号得负,并把绝对值相乘”即可求出结论.
【详解】
故答案为
【点睛】
本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键.
16、1.06×104
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:10600=1.06×104,
故答案为:1.06×104
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
17、1
【解析】
试题分析:根据圆锥的侧面积公式S=πrl得出圆锥的母线长,再结合扇形面积即可求出圆心角的度数.
解:∵侧面积为15πcm2,
∴圆锥侧面积公式为:S=πrl=π×3×l=15π,
解得:l=5,
∴扇形面积为15π=,
解得:n=1,
∴侧面展开图的圆心角是1度.
故答案为1.
考点:圆锥的计算.
18、1
【解析】
根据题意得x1+x2=2,x1x2=﹣1,
所以x1+x2﹣x1x2=2﹣(﹣1)=1.
故答案为1.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)共有5种方案;
(3)当100<k<150时,购进电冰箱38台,空调62台,总利润最大;当0<k<100时,购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元.
【解析】
(1)用“用9000元购进电冰箱的数量与用7200元购进空调数量相等”建立方程即可;(2)建立不等式组求出x的范围,代入即可得出结论;(3)建立y1=(k﹣100)x+20000,分三种情况讨论即可.
【详解】
(1)设每台空调的进价为m元,则每台电冰箱的进价(m+300)元,
由题意得,,
∴m=1200,
经检验,m=1200是原分式方程的解,也符合题意,
∴m+300=1500元,
答:每台空调的进价为1200元,每台电冰箱的进价为1500元;
(2)由题意,y=(1600﹣1500)x+(1400﹣1200)(100﹣x)=﹣100x+20000,
∵,
∴33≤x≤38,
∵x为正整数,
∴x=34,35,36,37,38,
即:共有5种方案;
(3)设厂家对电冰箱出厂价下调k(0<k<150)元后,这100台家电的销售总利润为y1元,
∴y1=(1600﹣1500+k)x+(1400﹣1200)(100﹣x)=(k﹣100)x+20000,
当100<k<150时,y1随x的最大而增大,
∴x=38时,y1取得最大值,
即:购进电冰箱38台,空调62台,总利润最大,
当0<k<100时,y1随x的最大而减小,
∴x=34时,y1取得最大值,
即:购进电冰箱34台,空调66台,总利润最大,
当k=100时,无论采取哪种方案,y1恒为20000元.
【点睛】
本题考查了一次函数的应用,分式方程的应用,不等式组的应用,根据题意找出等量关系是解题的关键.
20、 (1);(2)不公平,理由见解析.
【解析】
(1)画树状图列出所有等可能结果数,找到摸出一个黄球和一个白球的结果数,根据概率公式可得答案;
(2)结合(1)种树状图根据概率公式计算出两人获胜的概率,比较大小即可判断.
【详解】
(1)画树状图如下:
由树状图可知共有20种等可能结果,其中一次性摸出一个黄球和一个白球的有11种结果,
∴一次性摸出一个黄球和一个白球的概率为;
(2)不公平,
由(1)种树状图可知,丽丽去的概率为,张强去的概率为=,
∵,
∴该游戏不公平.
【点睛】
本题考查了列表法与树状图法,解题的关键是根据题意画出树状图.
21、(1)=; (2).
【解析】
(1)根据题意可知,,,,
,…由此得出第n个等式:an=;
(2)将每一个等式化简即可求得答案.
【详解】
解:(1)∵第1个等式:,
第2个等式:,
第3个等式:,
第4个等式:,
∴第n个等式:an=;
(2)a1+a2+a3+…+an
=(
=.
故答案为;.
【点睛】
此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.
22、(1)60°;(2)见解析
【解析】
(1)连接BD,由AD为圆的直径,得到∠ABD为直角,再利用30度角所对的直角边等于斜边的一半求出BD的长,根据CD与AB平行,得到一对内错角相等,确定出∠CDB为直角,在直角三角形BCD中,利用锐角三角函数定义求出tanC的值,即可确定出∠C的度数;
(2)连接OB,由OA=OB,利用等边对等角得到一对角相等,再由CD与AB平行,得到一对同旁内角互补,求出∠ABC度数,由∠ABC﹣∠ABO度数确定出∠OBC度数为90,即可得证;
【详解】
(1)如图,连接BD,
∵AD为圆O的直径,
∴∠ABD=90°,
∴BD=AD=3,
∵CD∥AB,∠ABD=90°,
∴∠CDB=∠ABD=90°,
在Rt△CDB中,tanC=,
∴∠C=60°;
(2)连接OB,
∵∠A=30°,OA=OB,
∴∠OBA=∠A=30°,
∵CD∥AB,∠C=60°,
∴∠ABC=180°﹣∠C=120°,
∴∠OBC=∠ABC﹣∠ABO=120°﹣30°=90°,
∴OB⊥BC,
∴BC为圆O的切线.
【点睛】
此题考查了切线的判定,熟练掌握性质及定理是解本题的关键.
23、 (2) k≤;(2)-2.
【解析】
试题分析:(2)根据方程的系数结合根的判别式,即可得出△=﹣4k+5≥0,解之即可得出实数k的取值范围;(2)由根与系数的关系可得x2+x2=2﹣2k、x2x2=k2﹣2,将其代入x22+x22=(x2+x2)2﹣2x2x2=26+x2x2中,解之即可得出k的值.
试题解析:(2)∵关于x的方程x2+(2k﹣2)x+k2﹣2=0有两个实数根x2,x2,
∴△=(2k﹣2)2﹣4(k2﹣2)=﹣4k+5≥0,解得:k≤,
∴实数k的取值范围为k≤.
(2)∵关于x的方程x2+(2k﹣2)x+k2﹣2=0有两个实数根x2,x2,
∴x2+x2=2﹣2k,x2x2=k2﹣2.∵x22+x22=(x2+x2)2﹣2x2x2=26+x2x2,
∴(2﹣2k)2﹣2×(k2﹣2)=26+(k2﹣2),即k2﹣4k﹣22=0,
解得:k=﹣2或k=6(不符合题意,舍去).∴实数k的值为﹣2.
考点:一元二次方程根与系数的关系,根的判别式.
24、(1)40;(2)54,补图见解析;(3)330;(4).
【解析】
(1)根据由自主学习的时间是1小时的人数占30%,可求得本次调查的学生人数;
(2),由自主学习的时间是0.5小时的人数为40×35%=14;
(3)求出这40名学生自主学习时间不少于1.5小时的百分比乘以600即可;
(4)根据题意画出树状图,然后由树状图求得所有等可能的结果与选中小亮A的情况,再利用概率公式求解即可求得答案.
【详解】
(1)∵自主学习的时间是1小时的有12人,占30%,
∴12÷30%=40,
故答案为40;
(2),故答案为54;
自主学习的时间是0.5小时的人数为40×35%=14;
补充图形如图:
(3)600×=330;
故答案为330;
(4)画树状图得:
∵共有12种等可能的结果,选中小亮A的有6种可能,
∴P(A)=.
25、每件衬衫应降价1元.
【解析】
利用衬衣平均每天售出的件数×每件盈利=每天销售这种衬衣利润列出方程解答即可.
【详解】
解:设每件衬衫应降价x元.
根据题意,得 (40-x)(1+2x)=110,
整理,得x2-30x+10=0,
解得x1=10,x2=1.
∵“扩大销售量,减少库存”,
∴x1=10应舍去,
∴x=1.
答:每件衬衫应降价1元.
【点睛】
此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.
26、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)最多可以购进1筒甲种羽毛球.
【解析】
(1)设该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据“甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,购买了2筒甲种羽毛球和3筒乙种羽毛球共花费255元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购进甲种羽毛球m筒,则购进乙种羽毛球(50﹣m)筒,根据总价=单价×数量结合总费用不超过2550元,即可得出关于m的一元一次不等式,解之取其最大值即可得出结论.
【详解】
(1)设该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,
依题意,得:,
解得:.
答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元.
(2)设购进甲种羽毛球m筒,则购进乙种羽毛球(50﹣m)筒,
依题意,得:60m+45(50﹣m)≤2550,
解得:m≤1.
答:最多可以购进1筒甲种羽毛球.
【点睛】
本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
27、(1);(2)
【解析】
(1)连接OC,根据切线的性质得到OC⊥DE,可以证明AD∥OC,根据平行线的性质可得,则根据等腰三角形的性质可得,利用,化简计算即可得到答案;
(2)连接CF,根据,可得,利用中垂线和等腰三角形的性质可证四边形是平行四边形,得到△AOF为等边三角形,由并可得四边形是菱形,可证是等边三角形,有∠FAO=60°,再根据弧长公式计算即可.
【详解】
解:(1)如图示,连结,
∵是的切线,∴.
又,∴,
∴,
∴.
∵,
∴.∴.
∵,
∴.
∴,即.
(2)如图示,连结,
∵,,
∴,
∴,
∴,
∴,
∵,
∴四边形是平行四边形,
∵,
∴四边形是菱形,
∴,
∴是等边三角形,
∴,
∴,
∵,
∴的长.
【点睛】
本题考查的是切线的性质、菱形的判定和性质、弧长的计算,掌握切线的性质定理、弧长公式是解题的关键.
安徽省阜阳市城南中学2021-2022学年中考联考数学试卷含解析: 这是一份安徽省阜阳市城南中学2021-2022学年中考联考数学试卷含解析,共23页。试卷主要包含了下列计算,正确的是,某一公司共有51名员工等内容,欢迎下载使用。
安徽省阜阳市颍泉区2021-2022学年中考数学五模试卷含解析: 这是一份安徽省阜阳市颍泉区2021-2022学年中考数学五模试卷含解析,共23页。试卷主要包含了已知,如图,两个反比例函数y1=等内容,欢迎下载使用。
2022年安徽省阜阳市颍南中学中考二模数学试题含解析: 这是一份2022年安徽省阜阳市颍南中学中考二模数学试题含解析,共18页。试卷主要包含了答题时请按要求用笔,下列计算正确的是,下列事件中是必然事件的是,如图,点P等内容,欢迎下载使用。