2022年山东省临沭县中考数学模拟预测试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.-2的绝对值是()
A.2 B.-2 C.±2 D.
2.用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是( )
A. B. C. D.
3.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十
.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为( )
A. B.
C. D.
4.已知矩形ABCD中,AB=3,BC=4,E为BC的中点,以点B为圆心,BA的长为半径画圆,交BC于点F,再以点C为圆心,CE的长为半径画圆,交CD于点G,则S1-S2=( )
A.6 B. C.12﹣π D.12﹣π
5.已知抛物线y=ax2+bx+c与反比例函数y= 的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是( )
A. B. C. D.
6.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为( )
A.﹣10= B.+10=
C.﹣10= D.+10=
7.若,则( )
A. B. C. D.
8.如图,DE是线段AB的中垂线,,,,则点A到BC的距离是
A.4 B. C.5 D.6
9.下列各式中,正确的是( )
A.﹣(x﹣y)=﹣x﹣y B.﹣(﹣2)﹣1= C.﹣ D.
10.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是( )
A.13;13 B.14;10 C.14;13 D.13;14
二、填空题(本大题共6个小题,每小题3分,共18分)
11.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出2个球,都是黄球的概率为 .
12.计算:+=______.
13.已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是,则袋中小球的总个数是_____
14.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.
15.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CDA= °.
16.如图,在△ABC中,∠C=90°,AC=8,BC=6,点D是AB的中点,点E在边AC上,将△ADE沿DE翻折,使点A落在点A′处,当A′E⊥AC时,A′B=____.
三、解答题(共8题,共72分)
17.(8分)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.
求证:AB=DC;试判断△OEF的形状,并说明理由.
18.(8分)已知BD平分∠ABF,且交AE于点D.
(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);
(2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形ABCD是菱形.
19.(8分)小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.请你用画树状图或列表的方法,求出这两数和为6的概率.如果和为奇数,则小明胜;若和为偶数,则小亮胜.你认为这个游戏规则对双方公平吗?做出判断,并说明理由.
20.(8分)九(3)班“2017年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.
(1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,求小芳获奖的概率.
(2)如果小芳、小明都有翻两张牌的机会.小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们获奖的机会相等吗?通过树状图分析说明理由.
21.(8分)在抗洪抢险救灾中,某地粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到没有受洪水威胁的A,B两仓库,已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为60吨,B库的容量为120吨,从甲、乙两库到A、B两库的路程和运费如表(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)
路程(千米)
运费(元/吨•千米)
甲库
乙库
甲库
乙库
A库
20
15
12
12
B库
25
20
10
8
若从甲库运往A库粮食x吨,
(1)填空(用含x的代数式表示):
①从甲库运往B库粮食 吨;
②从乙库运往A库粮食 吨;
③从乙库运往B库粮食 吨;
(2)写出将甲、乙两库粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式,并求出当从甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?
22.(10分)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.
(1)求证:DB=DE;
(2)若AB=12,BD=5,求⊙O的半径.
23.(12分)小丽和哥哥小明分别从家和图书馆同时出发,沿同一条路相向而行,小丽开始跑步,遇到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妺,再继续骑行5分钟,到家两人距离家的路程y(m)与各自离开出发的时间x(min)之间的函数图象如图所示:
(1)求两人相遇时小明离家的距离;
(2)求小丽离距离图书馆500m时所用的时间.
24.如图,一位测量人员,要测量池塘的宽度 的长,他过 两点画两条相交于点 的射线,在射线上取两点 ,使 ,若测得 米,他能求出 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
根据绝对值的性质进行解答即可
【详解】
解:﹣1的绝对值是:1.
故选:A.
【点睛】
此题考查绝对值,难度不大
2、D
【解析】
分析:根据主视图和俯视图之间的关系可以得出答案.
详解: ∵主视图和俯视图的长要相等, ∴只有D选项中的长和俯视图不相等,故选D.
点睛:本题主要考查的就是三视图的画法,属于基础题型.三视图的画法为:主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等.
3、A
【解析】
设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.
【详解】
解:设甲的钱数为x,乙的钱数为y,
依题意,得:.
故选A.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.
4、D
【解析】
根据题意可得到CE=2,然后根据S1﹣S2 =S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案
【详解】
解:∵BC=4,E为BC的中点,
∴CE=2,
∴S1﹣S2=3×4﹣ ,
故选D.
【点睛】
此题考查扇形面积的计算,矩形的性质及面积的计算.
5、B
【解析】
分析: 根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.
详解: ∵抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,
∴b>0,
∵交点横坐标为1,
∴a+b+c=b,
∴a+c=0,
∴ac<0,
∴一次函数y=bx+ac的图象经过第一、三、四象限.
故选B.
点睛: 考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.
6、B
【解析】
根据题意表示出衬衫的价格,利用进价的变化得出等式即可.
【详解】
解:设第一批购进x件衬衫,则所列方程为:
+10=.
故选B.
【点睛】
此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.
7、D
【解析】
等式左边为非负数,说明右边,由此可得b的取值范围.
【详解】
解:,
,解得
故选D.
【点睛】
本题考查了二次根式的性质:,.
8、A
【解析】
作于利用直角三角形30度角的性质即可解决问题.
【详解】
解:作于H.
垂直平分线段AB,
,
,
,
,
,
,
,,
,
故选A.
【点睛】
本题考查线段的垂直平分线的性质,等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
9、B
【解析】
A.括号前是负号去括号都变号;
B负次方就是该数次方后的倒数,再根据前面两个负号为正;
C. 两个负号为正;
D.三次根号和二次根号的算法.
【详解】
A选项,﹣(x﹣y)=﹣x+y,故A错误;
B选项, ﹣(﹣2)﹣1=,故B正确;
C选项,﹣,故C错误;
D选项,22,故D错误.
【点睛】
本题考查去括号法则的应用,分式的性质,二次根式的算法,熟记知识点是解题的关键.
10、C
【解析】
根据统计图,利用众数与中位数的概念即可得出答案.
【详解】
从统计图中可以得出这一周的气温分别是:12,15,14,10,13,14,11
所以众数为14;
将气温按从低到高的顺序排列为:10,11,12,13,14,14,15
所以中位数为13
故选:C.
【点睛】
本题主要考查中位数和众数,掌握中位数和众数的求法是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
让黄球的个数除以球的总个数即为所求的概率.
【详解】
解:因为一共10个球,其中3个黄球,所以从袋中任意摸出2个球是黄球的概率是.
故答案为:.
【点睛】
本题考查了概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.
12、1.
【解析】
利用同分母分式加法法则进行计算,分母不变,分子相加.
【详解】
解:原式=.
【点睛】
本题考查同分母分式的加法,掌握法则正确计算是本题的解题关键.
13、8个
【解析】
根据概率公式结合取出红球的概率即可求出袋中小球的总个数.
【详解】
袋中小球的总个数是:2÷=8(个).
故答案为8个.
【点睛】
本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.
14、等
【解析】
根据二次函数的图象最高点是坐标原点,可以得到a<0,b=0,c=0,所以解析式满足a<0,b=0,c=0即可.
【详解】
解:根据二次函数的图象最高点是坐标原点,可以得到a<0,b=0,c=0,
例如:.
【点睛】
此题是开放性试题,考查函数图象及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义.
15、1.
【解析】
连接OD,根据圆的切线定理和等腰三角形的性质可得出答案.
【详解】
连接OD,
则∠ODC=90°,∠COD=70°,
∵OA=OD,
∴∠ODA=∠A=∠COD=35°,
∴∠CDA=∠CDO+∠ODA=90°+35°=1°,
故答案为1.
考点:切线的性质.
16、或7
【解析】
分两种情况:
①如图1, 作辅助线, 构建矩形, 先由勾股定理求斜边AB=10, 由中点的定义求出AD和BD的长, 证明四边形HFGB是矩形, 根据同角的三角函数列式可以求DG和DF的长,并由翻折的性质得: ∠DA' E=∠A,A' D=AD=5, 由矩形性质和勾股定理可以得出结论: A' B=;
②如图2, 作辅助线, 构建矩形A' MNF,同理可以求出A' B的长.
【详解】
解:分两种情况:
如图1,
过D作DG⊥BC与G, 交A' E与F, 过B作BH⊥A' E与H,
D为AB的中点,BD=AB=AD,
∠C=,AC=8,BC=6,AB=10,
BD=AD=5,
sin ∠ABC=,
DG=4,
由翻折得: ∠DA' E=∠A, A' D=AD=5,
sin∠DA' E=sin ∠A=.
DF=3,
FG=4-3=1,
A'E⊥AC,BC⊥AC,
A'E//BC,∠HFG+∠DGB=,
∠DGB=,∠HFG=,∠EHB=,
四边形HFGB是矩形,
BH=FG=1,
同理得: A' E=AE=8 -1=7,
A'H=A'E-EH=7-6=1,
在Rt△AHB中 , 由勾股定理得: A' B=.
如图2,
过D作MN//AC, 交BC与于N,过A' 作A' F//AC, 交BC的延长线于F,延长A' E交直线DN于M, A'E⊥AC,A' M⊥MN, A' E⊥A'F,
∠M=∠MA'F=,∠ACB=,
∠F=∠ACB=,
四边形MA' FN県矩形,
MN=A'F,FN=A'M,
由翻折得: A' D=AD=5,Rt△A'MD中,DM=3,A'M=4,
FN=A'M=4,
Rt△BDN中,BD=5,DN=4, BN=3,
A' F=MN=DM+DN=3+4=7,
BF=BN+FN=3+4=7,
Rt△ABF中, 由勾股定理得: A' B=;
综上所述,A'B的长为或.
故答案为:或.
【点睛】
本题主要考查三角形翻转后的性质,注意不同的情况需分情况讨论.
三、解答题(共8题,共72分)
17、(1)证明略
(2)等腰三角形,理由略
【解析】
证明:(1)∵BE=CF,
∴BE+EF=CF+EF, 即BF=CE.
又∵∠A=∠D,∠B=∠C,
∴△ABF≌△DCE(AAS),
∴AB=DC.
(2)△OEF为等腰三角形
理由如下:∵△ABF≌△DCE,
∴∠AFB=∠DEC.
∴OE=OF.
∴△OEF为等腰三角形.
18、 (1)见解析:(2)见解析.
【解析】
试题分析:(1)根据角平分线的作法作出∠BAE的平分线AP即可;
(2)先证明△ABO≌△CBO,得到AO=CO,AB=CB,再证明△ABO≌△ADO,得到BO=DO.由对角线互相平分的四边形是平行四边形及有一组邻边相等的平行四边形是菱形即可证明四边形ABCD是菱形.
试题解析:(1)如图所示:
(2)如图:
在△ABO和△CBO中,∵∠ABO=∠CBO,OB=OB,∠ AOB=∠COB=90°,∴△ABO≌△CBO(ASA),∴AO=CO,AB=CB.在△ABO和△ADO中,∵∠OAB=∠OAD,OA=OA,∠AOB=∠AOD=90°,∴△ABO≌△ADO(ASA),∴BO=DO.∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵AB=CB,∴平行四边形ABCD是菱形.
考点:1.菱形的判定;2.作图—基本作图.
19、 (1)列表见解析;(2)这个游戏规则对双方不公平.
【解析】
(1)首先根据题意列表,然后根据表求得所有等可能的结果与两数和为6的情况,再利用概率公式求解即可;
(2)分别求出和为奇数、和为偶数的概率,即可得出游戏的公平性.
【详解】
(1)列表如下:
由表可知,总共有9种结果,其中和为6的有3种,则这两数和为6的概率;
(2)这个游戏规则对双方不公平.理由如下:
因为P(和为奇数),P(和为偶数),而,所以这个游戏规则对双方是不公平的.
【点睛】
本题考查了列表法求概率.注意树状图与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.
20、(1);(2)他们获奖机会不相等,理由见解析.
【解析】
(1)根据正面有2张笑脸、2张哭脸,直接利用概率公式求解即可求得答案;(2)根据题意分别列出表格,然后由表格即可求得所有等可能的结果与获奖的情况,再利用概率公式求解即可求得他们获奖的概率.
【详解】
(1)∵有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,
∴获奖的概率是;
故答案为;
(2)他们获奖机会不相等,理由如下:
小芳:
笑1
笑2
哭1
哭2
笑1
笑1,笑1
笑2,笑1
哭1,笑1
哭2,笑1
笑2
笑1,笑2
笑2,笑2
哭1,笑2
哭2,笑2
哭1
笑1,哭1
笑2,哭1
哭1,哭1
哭2,哭1
哭2
笑1,哭2
笑2,哭2
哭1,哭2
哭2,哭2
∵共有16种等可能的结果,翻开的两张纸牌中只要出现笑脸的有12种情况,
∴P(小芳获奖)=;
小明:
笑1
笑2
哭1
哭2
笑1
笑2,笑1
哭1,笑1
哭2,笑1
笑2
笑1,笑2
哭1,笑2
哭2,笑2
哭1
笑1,哭1
笑2,哭1
哭2,哭1
哭2
笑1,哭2
笑2,哭2
哭1,哭2
∵共有12种等可能的结果,翻开的两张纸牌中只要出现笑脸的有10种情况,
∴P(小明获奖)=,
∵P(小芳获奖)≠P(小明获奖),
∴他们获奖的机会不相等.
【点睛】
本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
21、(1)①(100﹣x);②(1﹣x);③(20+x);(2)从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元.
【解析】
分析:(Ⅰ)根据题意解答即可;
(Ⅱ)弄清调动方向,再依据路程和运费列出y(元)与x(吨)的函数关系式,最后可以利用一次函数的增减性确定“最省的总运费”.
详解:(Ⅰ)设从甲库运往A库粮食x吨;
①从甲库运往B库粮食(100﹣x)吨;
②从乙库运往A库粮食(1﹣x)吨;
③从乙库运往B库粮食(20+x)吨;
故答案为(100﹣x);(1﹣x);(20+x).
(Ⅱ)依题意有:若甲库运往A库粮食x吨,则甲库运到B库(100﹣x)吨,乙库运往A库(1﹣x)吨,乙库运到B库(20+x)吨.
则,解得:0≤x≤1.
从甲库运往A库粮食x吨时,总运费为:
y=12×20x+10×25(100﹣x)+12×15(1﹣x)+8×20×[120﹣(100﹣x)]
=﹣30x+39000;
∵从乙库运往A库粮食(1﹣x)吨,∴0≤x≤1,此时100﹣x>0,∴y=﹣30x+39000(0≤x≤1).
∵﹣30<0,∴y随x的增大而减小,∴当x=1时,y取最小值,最小值是2.
答:从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元.
点睛:本题是一次函数与不等式的综合题,先解不等式确定自变量的取值范围,然后依据一次函数的增减性来确定“最佳方案”.
22、(1)证明见解析;(2)
【解析】
试题分析:(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;
(2)由已知条件得出sin∠DEF和sin∠AOE的值,利用对应角的三角函数值相等推出结论.
试题解析:(1)∵DC⊥OA, ∴∠1+∠3=90°, ∵BD为切线,∴OB⊥BD, ∴∠2+∠5=90°, ∵OA=OB, ∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB中, ∠4=∠5,∴DE=DB.
(2)作DF⊥AB于F,连接OE,∵DB=DE, ∴EF=BE=3,在 RT△DEF中,EF=3,DE=BD=5,EF=3 , ∴DF=∴sin∠DEF== , ∵∠AOE=∠DEF, ∴在RT△AOE中,sin∠AOE= ,
∵AE=6, ∴AO=.
【点睛】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.
23、(1)两人相遇时小明离家的距离为1500米;(2)小丽离距离图书馆500m时所用的时间为分.
【解析】
(1)根据题意得出小明的速度,进而得出得出小明离家的距离;
(2)由(1)的结论得出小丽步行的速度,再列方程解答即可.
【详解】
解:(1)根据题意可得小明的速度为:4500÷(10+5)=300(米/分),
300×5=1500(米),
∴两人相遇时小明离家的距离为1500米;
(2)小丽步行的速度为:(4500﹣1500)÷(35﹣10)=120(米/分),
设小丽离距离图书馆500m时所用的时间为x分,根据题意得,
1500+120(x﹣10)=4500﹣500,
解得x=.
答:小丽离距离图书馆500m时所用的时间为分.
【点睛】
本题由函数图像获取信息,以及一元一次方程的应用,由函数图像正确获取信息是解答本题的关键.
24、可以求出A、B之间的距离为111.6米.
【解析】
根据,(对顶角相等),即可判定,根据相似三角形的性质得到,即可求解.
【详解】
解:∵,(对顶角相等),
∴,
∴,
∴,
解得米.
所以,可以求出、之间的距离为米
【点睛】
考查相似三角形的应用,掌握相似三角形的判定方法和性质是解题的关键.
2022年山东省莘县联考中考数学模拟预测试卷含解析: 这是一份2022年山东省莘县联考中考数学模拟预测试卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,一元二次方程的根是等内容,欢迎下载使用。
2022年山东省临沂市临沭县重点名校中考数学模拟预测题含解析: 这是一份2022年山东省临沂市临沭县重点名校中考数学模拟预测题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,下列各式计算正确的是,下列图案是轴对称图形的是,定义等内容,欢迎下载使用。
2022届山东省滨州市联考中考数学模拟预测试卷含解析: 这是一份2022届山东省滨州市联考中考数学模拟预测试卷含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁,下列说法正确的是,关于x的不等式组的所有整数解是等内容,欢迎下载使用。