2022年江苏省南通市长江中学十校联考最后数学试题含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.如图,已知▱ABCD中,E是边AD的中点,BE交对角线AC于点F,那么S△AFE:S四边形FCDE为( )
A.1:3 B.1:4 C.1:5 D.1:6
2.的值是( )
A.1 B.﹣1 C.3 D.﹣3
3.如图是由7个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )
A.主视图不变,左视图不变
B.左视图改变,俯视图改变
C.主视图改变,俯视图改变
D.俯视图不变,左视图改变
4.绿豆在相同条件下的发芽试验,结果如下表所示:
每批粒数n
100
300
400
600
1000
2000
3000
发芽的粒数m
96
282
382
570
948
1904
2850
发芽的频率
0.960
0.940
0.955
0.950
0.948
0.952
0.950
下面有三个推断:
①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率是0.955;
②根据上表,估计绿豆发芽的概率是0.95;
③若n为4000,估计绿豆发芽的粒数大约为3800粒.
其中推断合理的是( )
A.① B.①② C.①③ D.②③
5.如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是( )
A. B.2 C. D.2
6.国家主席习近平在2018年新年贺词中说道:“安得广厦千万间,大庇天下寒士俱欢颜!2017年我国3400000贫困人口实现易地扶贫搬迁、有了温暖的新家.”其中3400000用科学记数法表示为( )
A.0.34×107 B.3.4×106 C.3.4×105 D.34×105
7.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为( )
A.7.6×10﹣9 B.7.6×10﹣8 C.7.6×109 D.7.6×108
8.下列几何体中,主视图和俯视图都为矩形的是( )
A. B. C. D.
9.下列计算正确的是( )
A.﹣= B. =±2
C.a6÷a2=a3 D.(﹣a2)3=﹣a6
10.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE=5,则sin∠EDC的值为( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知x=2是一元二次方程x2﹣2mx+4=0的一个解, 则m的值为 .
12.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则BE:BC的值为_________.
13.如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则tan∠AEF的值是_____.
14.如图,线段AB两端点坐标分别为A(﹣1,5)、B(3,3),线段CD两端点坐标分别为C(5,3)、D (3,﹣1)数学课外兴趣小组研究这两线段发现:其中一条线段绕着某点旋转一个角度可得到另一条线段,请写出旋转中心的坐标________.
15.如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形的两条对边上,如果∠1=27°,那么∠2=______°
16.函数的定义域是__________.
三、解答题(共8题,共72分)
17.(8分)先化简,再求值:(x﹣2﹣)÷,其中x=.
18.(8分) (y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.
求的值.
19.(8分)某通讯公司推出了A,B两种上宽带网的收费方式(详情见下表)
设月上网时间为x h(x为非负整数),请根据表中提供的信息回答下列问题
(1)设方案A的收费金额为y1元,方案B的收费金额为y2元,分别写出y1,y2关于x的函数关系式;
(2)当35<x<50时,选取哪种方式能节省上网费,请说明理由
20.(8分)如图,在△ABC中,AD、AE分别为△ABC的中线和角平分线.过点C作CH⊥AE于点H,并延长交AB于点F,连接DH,求证:DH=BF.
21.(8分)如图,已知一次函数的图象与反比例函数的图象交于点,且与轴交于点;点在反比例函数的图象上,以点为圆心,半径为的作圆与轴,轴分别相切于点、.
(1)求反比例函数和一次函数的解析式;
(2)请连结,并求出的面积;
(3)直接写出当时,的解集.
22.(10分)如图,在正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边上的动点,且AE=BF=CG=DH.
(1)求证:△AEH≌△CGF;
(2)在点E、F、G、H运动过程中,判断直线EG是否经过某一个定点,如果是,请证明你的结论;如果不是,请说明理由
23.(12分)先化简:,然后在不等式的非负整数解中选择一个适当的数代入求值.
24.在平面直角坐标系xOy中,一次函数的图象与y轴交于点,与反比例函数 的图象交于点.
求反比例函数的表达式和一次函数表达式;
若点C是y轴上一点,且,直接写出点C的坐标.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据AE∥BC,E为AD中点,找到AF与FC的比,则可知△AEF面积与△FCE面积的比,同时因为△DEC面积=△AEC面积,则可知四边形FCDE面积与△AEF面积之间的关系.
【详解】
解:连接CE,∵AE∥BC,E为AD中点,
∴ .
∴△FEC面积是△AEF面积的2倍.
设△AEF面积为x,则△AEC面积为3x,
∵E为AD中点,
∴△DEC面积=△AEC面积=3x.
∴四边形FCDE面积为1x,
所以S△AFE:S四边形FCDE为1:1.
故选:C.
【点睛】
本题考查相似三角形的判定和性质、平行四边形的性质,解题关键是通过线段的比得到三角形面积的关系.
2、B
【解析】
直接利用立方根的定义化简得出答案.
【详解】
因为(-1)3=-1,
=﹣1.
故选:B.
【点睛】
此题主要考查了立方根,正确把握立方根的定义是解题关键.,
3、A
【解析】
分别得到将正方体①移走前后的三视图,依此即可作出判断.
【详解】
将正方体①移走前的主视图为:第一层有一个正方形,第二层有四个正方形,正方体①移走后的主视图为:第一层有一个正方形,第二层有四个正方形,没有改变。
将正方体①移走前的左视图为:第一层有一个正方形,第二层有两个正方形,正方体①移走后的左视图为:第一层有一个正方形,第二层有两个正方形,没有发生改变。
将正方体①移走前的俯视图为:第一层有四个正方形,第二层有两个正方形,正方体①移走后的俯视图为:第一层有四个正方形,第二层有两个正方形,发生改变。
故选A.
【点睛】
考查了三视图,从几何体的正面,左面,上面看到的平面图形中正方形的列数以及每列正方形的个数是解决本题的关键.
4、D
【解析】
①利用频率估计概率,大量反复试验下频率稳定值即概率,n=400,数值较小,不能近似的看为概率,①错误;②利用频率估计概率,大量反复试验下频率稳定值即概率,可得②正确;③用4000乘以绿豆发芽的的概率即可求得绿豆发芽的粒数,③正确.
【详解】
①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率大约是0.955,此推断错误;
②根据上表当每批粒数足够大时,频率逐渐接近于0.950,所以估计绿豆发芽的概率是0.95,此推断正确;
③若n为4000,估计绿豆发芽的粒数大约为4000×0.950=3800粒,此结论正确.
故选D.
【点睛】
本题考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
5、A
【解析】
试题分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=2,所以EF=.
解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,
∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,
∴AB=2EF,DC=DF+CF=8,
作DH⊥BC于H,
∵AD∥BC,∠B=90°,
∴四边形ABHD为矩形,
∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,
在Rt△DHC中,DH==2,
∴EF=DH=.
故选A.
点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.
6、B
【解析】
解:3400000=.
故选B.
7、A
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:将0.0000000076用科学计数法表示为.
故选A.
【点睛】
本题考查了用科学计数法表示较小的数,一般形式为a×,其中,n为由原数左边起第一个不为0的数字前面的0的个数所决定.
8、B
【解析】
A、主视图为等腰三角形,俯视图为圆以及圆心,故A选项错误;
B、主视图为矩形,俯视图为矩形,故B选项正确;
C、主视图,俯视图均为圆,故C选项错误;
D、主视图为矩形,俯视图为三角形,故D选项错误.
故选:B.
9、D
【解析】
根据二次根式的运算法则,同类二次根式的判断,开算术平方根,同底数幂的除法及幂的乘方运算.
【详解】
A. 不是同类二次根式,不能合并,故A选项错误;
B.=2≠±2,故B选项错误;
C. a6÷a2=a4≠a3,故C选项错误;
D. (−a2)3=−a6,故D选项正确.
故选D.
【点睛】
本题主要考查了二次根式的运算法则,开算术平方根,同底数幂的除法及幂的乘方运算,熟记法则是解题的关键.
10、A
【解析】
由等腰三角形三线合一的性质得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根据正弦函数的概念求解可得.
【详解】
∵△ABC中,AC=BC,过点C作CD⊥AB,
∴AD=DB=6,∠BDC=∠ADC=90°,
∵AE=5,DE∥BC,
∴AC=2AE=10,∠EDC=∠BCD,
∴sin∠EDC=sin∠BCD=,
故选:A.
【点睛】
本题主要考查解直角三角形,解题的关键是熟练掌握等腰三角形三线合一的性质和平行线的性质及直角三角形的性质等知识点.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1.
【解析】
试题分析:直接把x=1代入已知方程就得到关于m的方程,再解此方程即可.
试题解析:∵x=1是一元二次方程x1-1mx+4=0的一个解,
∴4-4m+4=0,
∴m=1.
考点:一元二次方程的解.
12、1:4
【解析】
由S△BDE:S△CDE=1:3,得到 ,于是得到 .
【详解】
解: 两个三角形同高,底边之比等于面积比.
故答案为
【点睛】
本题考查了三角形的面积,比例的性质等知识,知道等高不同底的三角形的面积的比等于底的比是解题的关键.
13、1.
【解析】
连接AF,由E是CD的中点、FC=2BF以及AB=2、AD=3可知AB=FC,BF=CE,则可证△ABF≌△FCE,进一步可得到△AFE是等腰直角三角形,则∠AEF=45°.
【详解】
解:连接AF,
∵E是CD的中点,
∴CE=,AB=2,
∵FC=2BF,AD=3,
∴BF=1,CF=2,
∴BF=CE,FC=AB,
∵∠B=∠C=90°,
∴△ABF≌△FCE,
∴AF=EF,∠BAF=∠CFE,∠AFB=∠FEC,
∴∠AFE=90°,
∴△AFE是等腰直角三角形,
∴∠AEF=45°,
∴tan∠AEF=1.
故答案为:1.
【点睛】
本题结合三角形全等考查了三角函数的知识.
14、或
【解析】
分点A的对应点为C或D两种情况考虑:当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,点E即为旋转中心;当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,点M即为旋转中心此题得解.
【详解】
当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,如图1所示:
点的坐标为,B点的坐标为,
点的坐标为;
当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,如图2所示:
点的坐标为,B点的坐标为,
点的坐标为.
综上所述:这个旋转中心的坐标为或.
故答案为或.
【点睛】
本题考查了坐标与图形变化中的旋转,根据给定点的坐标找出旋转中心的坐标是解题的关键.
15、57°.
【解析】
根据平行线的性质和三角形外角的性质即可求解.
【详解】
由平行线性质及外角定理,可得∠2=∠1+30°=27°+30°=57°.
【点睛】
本题考查平行线的性质及三角形外角的性质.
16、
【解析】
根据二次根式的性质,被开方数大于等于0,可知:x-1≥0,解得x的范围.
【详解】
根据题意得:x-1≥0,
解得:x≥1.
故答案为:.
【点睛】
此题考查二次根式,解题关键在于掌握二次根式有意义的条件.
三、解答题(共8题,共72分)
17、
【解析】
根据分式的运算法则即可求出答案.
【详解】
原式,
,
.
当时,原式
【点睛】
本题考查的知识点是分式的化简求值,解题关键是化简成最简再代入计算.
18、1
【解析】
通过已知等式化简得到未知量的关系,代入目标式子求值.
【详解】
∵(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.
∴(y﹣z)1﹣(y+z﹣1x)1+(x﹣y)1﹣(x+y﹣1z)1+(z﹣x)1﹣(z+x﹣1y)1=2,
∴(y﹣z+y+z﹣1x)(y﹣z﹣y﹣z+1x)+(x﹣y+x+y﹣1z)(x﹣y﹣x﹣y+1z)+(z﹣x+z+x﹣1y)(z﹣x﹣z﹣x+1y)=2,
∴1x1+1y1+1z1﹣1xy﹣1xz﹣1yz=2,
∴(x﹣y)1+(x﹣z)1+(y﹣z)1=2.
∵x,y,z均为实数,
∴x=y=z.
∴
19、(1),;(2)当35<x<1时,选择B方式能节省上网费,见解析.
【解析】
(1)根据两种方式的收费标准,进行分类讨论即可求解;
(2)当35<x<1时,计算出y1-y2的值,即可得出答案.
【详解】
解:(1)由题意得:;
即;
;
即;
(2)选择B方式能节省上网费
当35<x<1时,有y1=3x-45,y2=1.
:y1-y2=3x-45-1=3x-2.记y=3x-2
因为3>4,有y随x的增大而增大
当x=35时,y=3.
所以当35<x<1时,有y>3,即y>4.
所以当35<x<1时,选择B方式能节省上网费
【点睛】
此题考查了一次函数的应用,注意根据图表得出解题需要的信息,难度一般,正确理解收费标准求出函数解析式是解题的关键.
20、见解析.
【解析】
先证明△AFC为等腰三角形,根据等腰三角形三线合一证明H为FC的中点,又D为BC的中点,根据中位线的性质即可证明.
【详解】
∵AE为△ABC的角平分线,CH⊥AE,
∴△ACF是等腰三角形,
∴AF=AC,HF=CH,
∵AD为△ABC的中线,
∴DH是△BCF的中位线,
∴DH=BF.
【点睛】
本题考查三角形中位线定理,等腰三角形的判定与性质.解决本题的关键是证明H点为FC的中点,然后利用中位线的性质解决问题.本题中要证明DH=BF,一般三角形中出现这种2倍或关系时,常用中位线的性质解决.
21、(1),;(2)4;(3).
【解析】
(1)连接CB,CD,依据四边形BODC是正方形,即可得到B(1,2),点C(2,2),利用待定系数法即可得到反比例函数和一次函数的解析式;
(2)依据OB=2,点A的横坐标为-4,即可得到△AOB的面积为:2×4×=4;
(3)依据数形结合思想,可得当x<1时,k1x+b−>1的解集为:-4<x<1.
【详解】
解:(1)如图,连接,,
∵⊙C与轴,轴相切于点D,,且半径为,
,,
∴四边形是正方形,
,
,点,
把点代入反比例函数中,
解得:,
∴反比例函数解析式为:,
∵点在反比例函数上,
把代入中,可得,
,
把点和分别代入一次函数中,
得出:,
解得:,
∴一次函数的表达式为:;
(2)如图,连接,
,点的横坐标为,
的面积为:;
(3)由,根据图象可知:当时,的解集为:.
【点睛】
本题考查了反比例函数与一次函数的交点依据待定系数法求函数解析式,解题的关键是求出C,B点坐标.
22、(1)见解析;(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由见解析.
【解析】
分析:(1)由正方形的性质得出∠A=∠C=90°,AB=BC=CD=DA,由AE=BF=CG=DH证出AH=CF,由SAS证明△AEH≌△CGF即可求解;
(2)连接AC、EG,交点为O;先证明△AOE≌△COG,得出OA=OC,证出O为对角线AC、BD的交点,即O为正方形的中心.
详解:(1)证明:∵四边形ABCD是正方形,
∴∠A=∠C=90°,AB=BC=CD=DA,
∵AE=BF=CG=DH,
∴AH=CF,
在△AEH与△CGF中,
AH=CF,∠A=∠C,AE=CG,
∴△AEH≌△CGF(SAS);
(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由如下:
连接AC、EG,交点为O;如图所示:
∵四边形ABCD是正方形,
∴AB∥CD,
∴∠OAE=∠OCG,
在△AOE和△COG中,
∠OAE=∠OCG,∠AOE=∠COG,AE=CG,
∴△AOE≌△COG(AAS),
∴OA=OC,OE=OG,
即O为AC的中点,
∵正方形的对角线互相平分,
∴O为对角线AC、BD的交点,即O为正方形的中心.
点睛:考查了正方形的性质与判定、全等三角形的判定与性质等知识;本题综合性强,有一定难度,特别是(2)中,需要通过作辅助线证明三角形全等才能得出结果.
23、;2.
【解析】
先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.
【详解】
解:原式=
=
=
的非负整数解有:2,1,0,
其中当x取2或1时分母等于0,不符合条件,故x只能取0
∴将x=0代入得:原式=2
【点睛】
本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.
24、(1)y=,y=-x+1;(2)C(0,3+1 )或C(0,1-3).
【解析】
(1)依据一次函数的图象与轴交于点,与反比例函数的图象交于点,即可得到反比例函数的表达式和一次函数表达式;
(2)由,可得:,即可得到,再根据,可得或,即可得出点的坐标.
【详解】
(1)∵双曲线过,将代入,解得:.
∴所求反比例函数表达式为:.
∵点,点在直线上,∴,,∴,∴所求一次函数表达式为.
(2)由,可得:,∴.
又∵,∴或,∴,或,.
【点睛】
本题考查了待定系数法求反比例函数、一次函数的解析式和反比例函数与一次函数的交点问题.此题难度适中,注意掌握数形结合思想的应用.
江苏省南通市海安市曲塘中学2022年十校联考最后数学试题含解析: 这是一份江苏省南通市海安市曲塘中学2022年十校联考最后数学试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,一元二次方程的根的情况是,在数轴上表示不等式2等内容,欢迎下载使用。
江苏省南菁高级中学2021-2022学年十校联考最后数学试题含解析: 这是一份江苏省南菁高级中学2021-2022学年十校联考最后数学试题含解析,共25页。试卷主要包含了若等式x2+ax+19=等内容,欢迎下载使用。
江苏省南京市鼓楼实验中学2022年十校联考最后数学试题含解析: 这是一份江苏省南京市鼓楼实验中学2022年十校联考最后数学试题含解析,共23页。