|试卷下载
搜索
    上传资料 赚现金
    2022年湖北武汉市武昌区十四中学市级名校中考五模数学试题含解析
    立即下载
    加入资料篮
    2022年湖北武汉市武昌区十四中学市级名校中考五模数学试题含解析01
    2022年湖北武汉市武昌区十四中学市级名校中考五模数学试题含解析02
    2022年湖北武汉市武昌区十四中学市级名校中考五模数学试题含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年湖北武汉市武昌区十四中学市级名校中考五模数学试题含解析

    展开
    这是一份2022年湖北武汉市武昌区十四中学市级名校中考五模数学试题含解析,共23页。试卷主要包含了已知,则的值是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得(  )
    A.
    B.
    C.
    D.
    2.二次函数y=﹣(x+2)2﹣1的图象的对称轴是(  )
    A.直线x=1 B.直线x=﹣1 C.直线x=2 D.直线x=﹣2
    3.下列运算正确的是(  )
    A.a6÷a3=a2 B.3a2•2a=6a3 C.(3a)2=3a2 D.2x2﹣x2=1
    4.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是(    )
    A.9分 B.8分 C.7分 D.6分
    5.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则的长是( )

    A.π B. C. D.
    6.在半径等于5 cm的圆内有长为cm的弦,则此弦所对的圆周角为
    A.60° B.120° C.60°或120° D.30°或120°
    7.已知,则的值是  
    A.60 B.64 C.66 D.72
    8.在实数﹣3.5、、0、﹣4中,最小的数是(  )
    A.﹣3.5 B. C.0 D.﹣4
    9.如图,在平面直角坐标系中,点A在x轴的正半轴上,点B的坐标为(0,4),将△ABO绕点B逆时针旋转60°后得到△A'BO',若函数y=(x>0)的图象经过点O',则k的值为(  )

    A.2 B.4 C.4 D.8
    10.如图,正方形被分割成四部分,其中I、II为正方形,III、IV为长方形,I、II的面积之和等于III、IV面积之和的2倍,若II的边长为2,且I的面积小于II的面积,则I的边长为( )

    A.4 B.3 C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.已知a2+1=3a,则代数式a+的值为  .
    12.已知数据x1,x2,…,xn的平均数是,则一组新数据x1+8,x2+8,…,xn+8的平均数是____.
    13.方程的根是________.
    14.分解因式:x2﹣1=____.
    15.将一个含45°角的三角板,如图摆放在平面直角坐标系中,将其绕点顺时针旋转75°,点的对应点恰好落在轴上,若点的坐标为,则点的坐标为____________.

    16.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.
    A.如图,在平面直角坐标系中,点的坐标为,沿轴向右平移后得到,点的对应点是直线上一点,则点与其对应点间的距离为__________.

    B.比较__________的大小.
    17.二次函数y=(a-1)x2-x+a2-1 的图象经过原点,则a的值为______.
    三、解答题(共7小题,满分69分)
    18.(10分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.抽查D厂家的零件为   件,扇形统计图中D厂家对应的圆心角为   ;抽查C厂家的合格零件为   件,并将图1补充完整;通过计算说明合格率排在前两名的是哪两个厂家;若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.

    19.(5分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.
    (1)求证:AC是⊙O的切线;
    (2)若BF=6,⊙O的半径为5,求CE的长.

    20.(8分)如图,矩形ABCD中,AB=4,AD=5,E为BC上一点,BE∶CE=3∶2,连接AE,点P从点A出发,沿射线AB的方向以每秒1个单位长度的速度匀速运动,过点P作PF∥BC交直线AE于点F.
    (1)线段AE=______;
    (2)设点P的运动时间为t(s),EF的长度为y,求y关于t的函数关系式,并写出t的取值范围;
    (3)当t为何值时,以F为圆心的⊙F恰好与直线AB、BC都相切?并求此时⊙F的半径.

    21.(10分)化简,再求值:
    22.(10分)如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.如图1,求C点坐标;如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.

    23.(12分)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.
    (1)求抛物线的解析式;
    (2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;
    (3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

    24.(14分)如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.
    (1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);
    (2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;
    (3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.
    【详解】
    设每枚黄金重x两,每枚白银重y两,
    由题意得:,
    故选:D.
    【点睛】
    此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.
    2、D
    【解析】
    根据二次函数顶点式的性质解答即可.
    【详解】
    ∵y=﹣(x+2)2﹣1是顶点式,
    ∴对称轴是:x=-2,
    故选D.
    【点睛】
    本题考查二次函数顶点式y=a(x-h)2+k的性质,对称轴为x=h,顶点坐标为(h,k)熟练掌握顶点式的性质是解题关键.
    3、B
    【解析】
    A、根据同底数幂的除法法则计算;
    B、根据同底数幂的乘法法则计算;
    C、根据积的乘方法则进行计算;
    D、根据合并同类项法则进行计算.
    【详解】
    解:A、a6÷a3=a3,故原题错误;
    B、3a2•2a=6a3,故原题正确;
    C、(3a)2=9a2,故原题错误;
    D、2x2﹣x2=x2,故原题错误;
    故选B.
    【点睛】
    考查同底数幂的除法,合并同类项,同底数幂的乘法,积的乘方,熟记它们的运算法则是解题的关键.
    4、C
    【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.
    详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为 :7分,
    故答案为:C.
    点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    5、B
    【解析】
    连接OB,OC.首先证明△OBC是等边三角形,再利用弧长公式计算即可.
    【详解】
    解:连接OB,OC.

    ∵∠BOC=2∠BAC=60°,
    ∵OB=OC,
    ∴△OBC是等边三角形,
    ∴OB=OC=BC=1,
    ∴的长=,
    故选B.
    【点睛】
    考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.
    6、C
    【解析】
    根据题意画出相应的图形,由OD⊥AB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD的长,且得出OD为角平分线,在Rt△AOD中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD的度数,进而确定出∠AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数.
    【详解】
    如图所示,

    ∵OD⊥AB,
    ∴D为AB的中点,即AD=BD=,
    在Rt△AOD中,OA=5,AD=,
    ∴sin∠AOD=,
    又∵∠AOD为锐角,
    ∴∠AOD=60°,
    ∴∠AOB=120°,
    ∴∠ACB=∠AOB=60°,
    又∵圆内接四边形AEBC对角互补,
    ∴∠AEB=120°,
    则此弦所对的圆周角为60°或120°.
    故选C.
    【点睛】
    此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.
    7、A
    【解析】
    将代入原式,计算可得.
    【详解】
    解:当时,
    原式




    故选A.
    【点睛】
    本题主要考查分式的加减法,解题的关键是熟练掌握完全平方公式.
    8、D
    【解析】
    根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可
    【详解】
    在实数﹣3.5、、0、﹣4中,最小的数是﹣4,故选D.
    【点睛】
    掌握实数比较大小的法则
    9、C
    【解析】
    根据题意可以求得点O'的坐标,从而可以求得k的值.
    【详解】
    ∵点B的坐标为(0,4),
    ∴OB=4,
    作O′C⊥OB于点C,
    ∵△ABO绕点B逆时针旋转60°后得到△A'BO',
    ∴O′B=OB=4,
    ∴O′C=4×sin60°=2,BC=4×cos60°=2,
    ∴OC=2,
    ∴点O′的坐标为:(2,2),
    ∵函数y=(x>0)的图象经过点O',
    ∴2=,得k=4,
    故选C.
    【点睛】
    本题考查了反比例函数图象上点的坐标特征、坐标与图形的变化,解题的关键是利用数形结合的思想和反比例函数的性质解答.
    10、C
    【解析】
    设I的边长为x,根据“I、II的面积之和等于III、IV面积之和的2倍”列出方程并解方程即可.
    【详解】
    设I的边长为x
    根据题意有
    解得或(舍去)
    故选:C.
    【点睛】
    本题主要考查一元二次方程的应用,能够根据题意列出方程是解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    根据题意a2+1=1a,整体代入所求的式子即可求解.
    【详解】
    ∵a2+1=1a,
    ∴a+=+===1.
    故答案为1.
    12、
    【解析】
    根据数据x1,x2,…,xn的平均数为=(x1+x2+…+xn),即可求出数据x1+1,x2+1,…,xn+1的平均数.
    【详解】
    数据x1+1,x2+1,…,xn+1的平均数=(x1+1+x2+1+…+xn+1)=(x1+x2+…+xn)+1=+1.
    故答案为+1.
    【点睛】
    本题考查了平均数的概念,平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.
    13、x=2
    【解析】
    分析:解此方程首先要把它化为我们熟悉的方程(一元二次方程),解新方程,检验是否符合题意,即可求得原方程的解.
    详解:据题意得:2+2x=x2,
    ∴x2﹣2x﹣2=0,
    ∴(x﹣2)(x+1)=0,
    ∴x1=2,x2=﹣1.
    ∵≥0,
    ∴x=2.
    故答案为:2.
    点睛:本题考查了学生综合应用能力,解方程时要注意解题方法的选择,在求值时要注意解的检验.
    14、(x+1)(x﹣1).
    【解析】
    试题解析:x2﹣1=(x+1)(x﹣1).
    考点:因式分解﹣运用公式法.
    15、
    【解析】
    先求得∠ACO=60°,得出∠OAC=30°,求得AC=2OC=2,解等腰直角三角形求得直角边为,从而求出B′的坐标.
    【详解】
    解:∵∠ACB=45°,∠BCB′=75°,
    ∴∠ACB′=120°,
    ∴∠ACO=60°,
    ∴∠OAC=30°,
    ∴AC=2OC,
    ∵点C的坐标为(1,0),
    ∴OC=1,
    ∴AC=2OC=2,
    ∵△ABC是等腰直角三角形,



    ∴B′点的坐标为
    【点睛】
    此题主要考查了旋转的性质及坐标与图形变换,同时也利用了直角三角形性质,首先利用直角三角形的性质得到有关线段的长度,即可解决问题.
    16、5 >
    【解析】
    A:根据平移的性质得到OA′=OA,OO′=BB′,根据点A′在直线求出A′的横坐标,进而求出OO′的长度,最后得到BB′的长度;B:根据任意角的正弦值等于它余角的余弦值将sin53°化为cos37°,再进行比较.
    【详解】
    A:由平移的性质可知,OA′=OA=4,OO′=BB′.因为点A′在直线上,将y=4代入,得到x=5.所以OO′=5,又因为OO′=BB′,所以点B与其对应点B′间的距离为5.故答案为5.
    B:sin53°=cos(90°-53°)=cos37°,
    tan37°= ,
    根据正切函数与余弦函数图像可知,tan37°>tan30°,cos37°>cos45°,
    即tan37°> ,cos37°< ,
    又∵,∴tan37°<cos37°,即sin53°>tan37°.故答案是>.
    【点睛】
    本题主要考查图形的平移、一次函数的解析式和三角函数的图像,熟练掌握这些知识并灵活运用是解答的关键.
    17、-1
    【解析】
    将(2,2)代入y=(a-1)x2-x+a2-1 即可得出a的值.
    【详解】
    解:∵二次函数y=(a-1)x2-x+a2-1 的图象经过原点,
    ∴a2-1=2,
    ∴a=±1,
    ∵a-1≠2,
    ∴a≠1,
    ∴a的值为-1.
    故答案为-1.
    【点睛】
    本题考查了二次函数图象上点的坐标特征,图象过原点,可得出x=2时,y=2.

    三、解答题(共7小题,满分69分)
    18、(1)500, 90°;(2)380;(3)合格率排在前两名的是C、D两个厂家;(4)P(选中C、D)=.
    【解析】
    试题分析:(1)计算出D厂的零件比例,则D厂的零件数=总数×所占比例,D厂家对应的圆心角为360°×所占比例;
    (2)C厂的零件数=总数×所占比例;
    (3)计算出各厂的合格率后,进一步比较得出答案即可;
    (4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.
    试题解析:(1)D厂的零件比例=1-20%-20%-35%=25%,
    D厂的零件数=2000×25%=500件;
    D厂家对应的圆心角为360°×25%=90°;
    (2)C厂的零件数=2000×20%=400件,
    C厂的合格零件数=400×95%=380件,
    如图:

    (3)A厂家合格率=630÷(2000×35%)=90%,
    B厂家合格率=370÷(2000×20%)=92.5%,
    C厂家合格率=95%,
    D厂家合格率470÷500=94%,
    合格率排在前两名的是C、D两个厂家;
    (4)根据题意画树形图如下:

    共有12种情况,选中C、D的有2种,
    则P(选中C、D)==.
    考点:1.条形统计图;2.扇形统计图;3. 树状图法.
    19、(1)证明见解析;(2)CE=1.
    【解析】
    (1)根据等角对等边得∠OBE=∠OEB,由角平分线的定义可得∠OBE=∠EBC,从而可得∠OEB=∠EBC,根据内错角相等,两直线平行可得OE∥BC,根据两直线平行,同位角相等可得∠OEA=90°,从而可证AC是⊙O的切线.
    (2)根据垂径定理可求BH=BF=3,根据三个角是直角的四边形是矩形,可得四边形OHCE是矩形,由矩形的对边相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的长,从而求出CE的长.
    【详解】
    (1)证明:如图,连接OE,

    ∵OB=OE,
    ∴∠OBE=∠OEB,
    ∵ BE平分∠ABC.
    ∴∠OBE=∠EBC,
    ∴∠OEB=∠EBC,
    ∴OE∥BC,
    ∵ ∠ACB=90° ,
    ∴∠OEA=∠ACB=90°,
    ∴ AC是⊙O的切线 .
    (2)解:过O作OH⊥BF,
    ∴BH=BF=3,四边形OHCE是矩形,
    ∴CE=OH,
    在Rt△OBH中,BH=3,OB=5,
    ∴OH==1,
    ∴CE=1.
    【点睛】
    本题考查切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性.
    20、(1)5;(2);(3)时,半径PF=;t=16,半径PF=12.
    【解析】
    (1)由矩形性质知BC=AD=5,根据BE:CE=3:2知BE=3,利用勾股定理可得AE=5;
    (2)由PF∥BE知,据此求得AF=t,再分0≤t≤4和t>4两种情况分别求出EF即可得;
    (3)由以点F为圆心的⊙F恰好与直线AB、BC相切时PF=PG,再分t=0或t=4、0<t<4、t>4这三种情况分别求解可得
    【详解】
    (1)∵四边形ABCD为矩形,
    ∴BC=AD=5,
    ∵BE∶CE=3∶2,
    则BE=3,CE=2,
    ∴AE===5.
    (2)如图1,

    当点P在线段AB上运动时,即0≤t≤4,
    ∵PF∥BE,
    ∴=,即=,
    ∴AF=t,
    则EF=AE-AF=5-t,即y=5-t(0≤t≤4);
    如图2,

    当点P在射线AB上运动时,即t>4,
    此时,EF=AF-AE=t-5,即y=t-5(t>4);
    综上,;
    (3)以点F为圆心的⊙F恰好与直线AB、BC相切时,PF=FG,分以下三种情况:
    ①当t=0或t=4时,显然符合条件的⊙F不存在;
    ②当0<t<4时,如解图1,作FG⊥BC于点G,
    则FG=BP=4-t,
    ∵PF∥BC,
    ∴△APF∽△ABE,
    ∴=,即=,
    ∴PF=t,
    由4-t=t可得t=,
    则此时⊙F的半径PF=;
    ③当t>4时,如解图2,同理可得FG=t-4,PF=t,
    由t-4=t可得t=16,
    则此时⊙F的半径PF=12.
    【点睛】
    本题主要考查了矩形的性质,勾股定理,动点的函数为题,切线的性质,相似三角形的判定与性质及分类讨论的数学思想.解题的关键是熟练掌握切线的性质、矩形的性质及相似三角形的判定与性质.
    21、
    【解析】
    试题分析:把分式化简,然后把x的值代入化简后的式子求值就可以了.
    试题解析:原式=
    =
    当时,原式=.
    考点:1.二次根式的化简求值;2.分式的化简求值.
    22、(1)C(1,-4).(2)证明见解析;(3)∠APB=135°,P(1,0).
    【解析】
    (1)作CH⊥y轴于H,证明△ABO≌△BCH,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH,得到C点坐标;
    (2)证明△PBA≌△QBC,根据全等三角形的性质得到PA=CQ;
    (3)根据C、P,Q三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP,得到P点坐标.
    【详解】
    (1)作CH⊥y轴于H,

    则∠BCH+∠CBH=90°,
    ∵AB⊥BC,
    ∴∠ABO+∠CBH=90°,
    ∴∠ABO=∠BCH,
    在△ABO和△BCH中,

    ∴△ABO≌△BCH,
    ∴BH=OA=3,CH=OB=1,
    ∴OH=OB+BH=4,
    ∴C点坐标为(1,﹣4);
    (2)∵∠PBQ=∠ABC=90°,
    ∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,
    在△PBA和△QBC中,

    ∴△PBA≌△QBC,
    ∴PA=CQ;
    (3)∵△BPQ是等腰直角三角形,
    ∴∠BQP=45°,
    当C、P,Q三点共线时,∠BQC=135°,
    由(2)可知,△PBA≌△QBC,
    ∴∠BPA=∠BQC=135°,
    ∴∠OPB=45°,
    ∴OP=OB=1,
    ∴P点坐标为(1,0).
    【点睛】
    本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.
    23、 (1) 抛物线的解析式为y=x2-2x+1,(2) 四边形AECP的面积的最大值是,点P(,﹣);(3) Q(4,1)或(-3,1).
    【解析】
    (1)把点A,B的坐标代入抛物线的解析式中,求b,c;(2)设P(m,m2−2m+1),根据S四边形AECP=S△AEC+S△APC,把S四边形AECP用含m式子表示,根据二次函数的性质求解;(3)设Q(t,1),分别求出点A,B,C,P的坐标,求出AB,BC,CA;用含t的式子表示出PQ,CQ,判断出∠BAC=∠PCA=45°,则要分两种情况讨论,根据相似三角形的对应边成比例求t.
    【详解】
    解:(1)将A(0,1),B(9,10)代入函数解析式得:
    ×81+9b+c=10,c=1,解得b=−2,c=1,
    所以抛物线的解析式y=x2−2x+1;
    (2)∵AC∥x轴,A(0,1),
    ∴x2−2x+1=1,解得x1=6,x2=0(舍),即C点坐标为(6,1),
    ∵点A(0,1),点B(9,10),
    ∴直线AB的解析式为y=x+1,设P(m,m2−2m+1),∴E(m,m+1),
    ∴PE=m+1−(m2−2m+1)=−m2+3m.
    ∵AC⊥PE,AC=6,
    ∴S四边形AECP=S△AEC+S△APC=AC⋅EF+AC⋅PF
    =AC⋅(EF+PF)=AC⋅EP
    =×6(−m2+3m)=−m2+9m.
    ∵0 ∴当m=时,四边形AECP的面积最大值是,此时P();
    (3)∵y=x2−2x+1=(x−3)2−2,
    P(3,−2),PF=yF−yp=3,CF=xF−xC=3,
    ∴PF=CF,∴∠PCF=45∘,
    同理可得∠EAF=45∘,∴∠PCF=∠EAF,
    ∴在直线AC上存在满足条件的点Q,
    设Q(t,1)且AB=,AC=6,CP=,
    ∵以C,P,Q为顶点的三角形与△ABC相似,
    ①当△CPQ∽△ABC时,
    CQ:AC=CP:AB,(6−t):6=,解得t=4,所以Q(4,1);
    ②当△CQP∽△ABC时,
    CQ:AB=CP:AC,(6−t)6,解得t=−3,所以Q(−3,1).
    综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C,P,Q为顶点的三角形与△ABC相似,Q点的坐标为(4,1)或(−3,1).

    【点睛】
    本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,平行于坐标轴的直线上两点间的距离是较大的坐标减较小的坐标;解(3)的关键是利用相似三角形的性质的出关于CQ的比例,要分类讨论,以防遗漏.
    24、(1)作图见解析;(2)EB是平分∠AEC,理由见解析; (3)△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.
    【解析】
    【分析】(1)根据作线段的垂直平分线的方法作图即可得出结论;
    (2)先求出DE=CE=1,进而判断出△ADE≌△BCE,得出∠AED=∠BEC,再用锐角三角函数求出∠AED,即可得出结论;
    (3)先判断出△AEP≌△FBP,即可得出结论.
    【详解】(1)依题意作出图形如图①所示;

    (2)EB是平分∠AEC,理由:
    ∵四边形ABCD是矩形,
    ∴∠C=∠D=90°,CD=AB=2,BC=AD=,
    ∵点E是CD的中点,
    ∴DE=CE=CD=1,
    在△ADE和△BCE中,,
    ∴△ADE≌△BCE,
    ∴∠AED=∠BEC,
    在Rt△ADE中,AD=,DE=1,
    ∴tan∠AED==,
    ∴∠AED=60°,
    ∴∠BCE=∠AED=60°,
    ∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,
    ∴BE平分∠AEC;
    (3)∵BP=2CP,BC==,
    ∴CP=,BP=,
    在Rt△CEP中,tan∠CEP==,
    ∴∠CEP=30°,
    ∴∠BEP=30°,
    ∴∠AEP=90°,
    ∵CD∥AB,
    ∴∠F=∠CEP=30°,
    在Rt△ABP中,tan∠BAP==,
    ∴∠PAB=30°,
    ∴∠EAP=30°=∠F=∠PAB,
    ∵CB⊥AF,
    ∴AP=FP,
    ∴△AEP≌△FBP,
    ∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,
    变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.
    【点睛】本题考查了矩形的性质,全等三角形的判定和性质,解直角三角形,图形的变换等,熟练掌握和灵活应用相关的性质与定理、判断出△AEP≌△△FBP是解本题的关键.

    相关试卷

    湖北省武汉市硚口区市级名校2021-2022学年中考数学模试卷含解析: 这是一份湖北省武汉市硚口区市级名校2021-2022学年中考数学模试卷含解析,共19页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    湖北省武汉市硚口区市级名校2021-2022学年中考二模数学试题含解析: 这是一份湖北省武汉市硚口区市级名校2021-2022学年中考二模数学试题含解析,共20页。试卷主要包含了下列各式计算正确的是,将一副三角尺,下列计算正确的是等内容,欢迎下载使用。

    湖北省武汉市汉阳区市级名校2022年中考二模数学试题含解析: 这是一份湖北省武汉市汉阳区市级名校2022年中考二模数学试题含解析,共16页。试卷主要包含了下列说法错误的是,在,,则的值为,我省2013年的快递业务量为1等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map