2022年广东省中山市三校毕业升学考试模拟卷数学卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是( )
A. B. C. D.
2.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( )
A. B. C. D.
3.如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )
A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC
4.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=( )
A.6 B.6 C.3 D.3
5.小明解方程的过程如下,他的解答过程中从第( )步开始出现错误.
解:去分母,得1﹣(x﹣2)=1①
去括号,得1﹣x+2=1②
合并同类项,得﹣x+3=1③
移项,得﹣x=﹣2④
系数化为1,得x=2⑤
A.① B.② C.③ D.④
6.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是( )
A. B. C. D.
7.已知,则的值为
A. B. C. D.
8.sin45°的值等于( )
A. B.1 C. D.
9.如图,已知抛物线和直线.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M= y1=y2.
下列判断: ①当x>2时,M=y2;
②当x<0时,x值越大,M值越大;
③使得M大于4的x值不存在;
④若M=2,则x=" 1" .
其中正确的有
A.1个 B.2个 C.3个 D.4个
10.已知下列命题:①对顶角相等;②若a>b>0,则<;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为( )
A. B. C. D.
11.在下列各平面图形中,是圆锥的表面展开图的是( )
A. B. C. D.
12.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有( )
A.3块 B.4块 C.6块 D.9块
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知x+y=8,xy=2,则x2y+xy2=_____.
14.已知x、y是实数且满足x2+xy+y2﹣2=0,设M=x2﹣xy+y2,则M的取值范围是_____.
15.已知直角三角形的两边长分别为3、1.则第三边长为________.
16.阅读理解:引入新数,新数满足分配律,结合律,交换律.已知,那么________.
17.如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为 .
18.计算(﹣a2b)3=__.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表.
征文比赛成绩频数分布表
分数段
频数
频率
60≤m<70
38
0.38
70≤m<80
a
0.32
80≤m<90
b
c
90≤m≤100
10
0.1
合计
1
请根据以上信息,解决下列问题:
(1)征文比赛成绩频数分布表中c的值是 ;
(2)补全征文比赛成绩频数分布直方图;
(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.
20.(6分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.
求证:(1)△ABE≌△CDF;四边形BFDE是平行四边形.
21.(6分)矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.
(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.
①求证:△OCP∽△PDA;
②若△OCP与△PDA的面积比为1:4,求边AB的长.
(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.
22.(8分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
23.(8分)如图,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圆⊙O上的一动点(点P与点C位于直线AB的异侧)连接AP、BP,延长AP到D,使PD=PB,连接BD.
(1)求证:PC∥BD;
(2)若⊙O的半径为2,∠ABP=60°,求CP的长;
(3)随着点P的运动,的值是否会发生变化,若变化,请说明理由;若不变,请给出证明.
24.(10分)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,连接AD,过D作AC的垂线,交AC边于点E,交AB 边的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)若∠F=30°,BF=3,求弧AD的长.
25.(10分)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行
销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)于销售单价x(元
/个)之间的对应关系如图所示.试判断y与x之间的函数关系,并求出函数关系式;若许愿瓶的进价为6元/个,按照上述市场调查销售规律,求利润w(元)与销售单价x(元/个)之间的
函数关系式;若许愿瓶的进货成本不超过900元,要想获得最大利润,试求此时这种许愿瓶的销售单价,并求出
最大利润.
26.(12分)如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE交边AC于点E,DE交BA延长线于点F,且AD2=DE•DF.
(1)求证:△BFD∽△CAD;
(2)求证:BF•DE=AB•AD.
27.(12分)菏泽市牡丹区中学生运动会即将举行,各个学校都在积极地做准备,某校为奖励在运动会上取得好成绩的学生,计划购买甲、乙两种奖品共100件,已知甲种奖品的单价是30元,乙种奖品的单价是20元.
(1)若购买这批奖品共用2800元,求甲、乙两种奖品各购买了多少件?
(2)若购买这批奖品的总费用不超过2900元,则最多购买甲种奖品多少件?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
根据轴对称图形的概念求解.
【详解】
解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形.
故选D.
【点睛】
本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形
2、C
【解析】
试题分析:观察可得,只有选项C的主视图和左视图相同,都为,故答案选C.
考点:简单几何体的三视图.
3、D
【解析】
解:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,
∴AE∥BC,故C选项正确,
∴∠EAC=∠C,故B选项正确,
∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,
故选D.
【点睛】
本题考查作图—复杂作图;平行线的判定与性质;三角形的外角性质.
4、A
【解析】
试题分析:根据垂径定理先求BC一半的长,再求BC的长.
解:如图所示,设OA与BC相交于D点.
∵AB=OA=OB=6,
∴△OAB是等边三角形.
又根据垂径定理可得,OA平分BC,
利用勾股定理可得BD=
所以BC=2BD=.
故选A.
点睛:本题主要考查垂径定理和勾股定理. 解题的关键在于要利用好题中的条件圆O与圆A的半径相等,从而得出△OAB是等边三角形,为后继求解打好基础.
5、A
【解析】
根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.
【详解】
=1,
去分母,得1-(x-2)=x,故①错误,
故选A.
【点睛】
本题考查解分式方程,解答本题的关键是明确解分式方程的方法.
6、D
【解析】
A,B,C只能通过旋转得到,D既可经过平移,又可经过旋转得到,故选D.
7、C
【解析】
由题意得,4−x⩾0,x−4⩾0,
解得x=4,则y=3,则=,
故选:C.
8、D
【解析】
根据特殊角的三角函数值得出即可.
【详解】
解:sin45°=,
故选:D.
【点睛】
本题考查了特殊角的三角函数的应用,能熟记特殊角的三角函数值是解此题的关键,难度适中.
9、B
【解析】
试题分析:∵当y1=y2时,即时,解得:x=0或x=2,
∴由函数图象可以得出当x>2时, y2>y1;当0<x<2时,y1>y2;当x<0时, y2>y1.∴①错误.
∵当x<0时, -直线的值都随x的增大而增大,
∴当x<0时,x值越大,M值越大.∴②正确.
∵抛物线的最大值为4,∴M大于4的x值不存在.∴③正确;
∵当0<x<2时,y1>y2,∴当M=2时,2x=2,x=1;
∵当x>2时,y2>y1,∴当M=2时,,解得(舍去).
∴使得M=2的x值是1或.∴④错误.
综上所述,正确的有②③2个.故选B.
10、B
【解析】
∵①对顶角相等,故此选项正确;
②若a>b>0,则<,故此选项正确;
③对角线相等且互相垂直平分的四边形是正方形,故此选项错误;
④抛物线y=x2﹣2x与坐标轴有2个不同交点,故此选项错误;
⑤边长相等的多边形内角不一定都相等,故此选项错误;
∴从中任选一个命题是真命题的概率为:.
故选:B.
11、C
【解析】
结合圆锥的平面展开图的特征,侧面展开是一个扇形,底面展开是一个圆.
【详解】
解:圆锥的展开图是由一个扇形和一个圆形组成的图形.
故选C.
【点睛】
考查了几何体的展开图,熟记常见立体图形的展开图的特征,是解决此类问题的关键.注意圆锥的平面展开图是一个扇形和一个圆组成.
12、B
【解析】
分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.
解答:解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有四个正方体.
故选B.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
将所求式子提取xy分解因式后,把x+y与xy的值代入计算,即可得到所求式子的值.
【详解】
∵x+y=8,xy=2,
∴x2y+xy2=xy(x+y)=2×8=1.
故答案为:1.
【点睛】
本题考查的知识点是因式分解的应用,解题关键是将所求式子分解因式.
14、≤M≤6
【解析】
把原式的xy变为2xy-xy,根据完全平方公式特点化简,然后由完全平方式恒大于等于0,得到xy的范围;再把原式中的xy变为-2xy+3xy,同理得到xy的另一个范围,求出两范围的公共部分,然后利用不等式的基本性质求出2-2xy的范围,最后利用已知x2+xy+y2-2=0表示出x2+y2,代入到M中得到M=2-2xy,2-2xy的范围即为M的范围.
【详解】
由得:
即 所以
由得:
即 所以
∴
∴不等式两边同时乘以−2得:
,即
两边同时加上2得:即
∵
∴
∴
则M的取值范围是≤M≤6.
故答案为:≤M≤6.
【点睛】
此题考查了完全平方公式,以及不等式的基本性质,解题时技巧性比较强,对已知的式子进行了三次恒等变形,前两次利用拆项法拼凑完全平方式,最后一次变形后整体代入确定出M关于xy的式子,从而求出M的范围.要求学生熟练掌握完全平方公式的结构特点:两数的平方和加上或减去它们乘积的2倍等于两数和或差的平方.
15、4或
【解析】
试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:
①长为3的边是直角边,长为3的边是斜边时:第三边的长为:;
②长为3、3的边都是直角边时:第三边的长为:;
∴第三边的长为:或4.
考点:3.勾股定理;4.分类思想的应用.
16、2
【解析】
根据定义即可求出答案.
【详解】
由题意可知:原式=1-i2=1-(-1)=2
故答案为2
【点睛】
本题考查新定义型运算,解题的关键是正确理解新定义.
17、7
【解析】
试题分析:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC.
∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.
∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.
又∵∠B=∠C=60°,∴△ABD∽△DCE.
∴,即.
∴.
18、−a6b3
【解析】
根据积的乘方和幂的乘方法则计算即可.
【详解】
原式=(﹣a2b)3=−a6b3,故答案为−a6b3.
【点睛】
本题考查了积的乘方和幂的乘方,关键是掌握运算法则.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)0.2;(2)答案见解析;(3)300
【解析】
第一问,根据频率的和为1,求出c的值;第二问,先用分数段是90到100的频数和频率求出总的样本数量,然后再乘以频率分别求出a和b的值,再画出频数分布直方图;第三问用全市征文的总篇数乘以80分以上的频率得到全市80分以上的征文的篇数.
【详解】
解:(1)1﹣0.38﹣0.32﹣0.1=0.2,
故答案为0.2;
(2)10÷0.1=100,
100×0.32=32,100×0.2=20,
补全征文比赛成绩频数分布直方图:
(3)全市获得一等奖征文的篇数为:1000×(0.2+0.1)=300(篇).
【点睛】
掌握有关频率和频数的相关概念和计算,是解答本题的关键.
20、(1)见解析;(2)见解析;
【解析】
(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.
(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.
【详解】
证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,
在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,
∴△ABE≌△CDF(SAS).
(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.
∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.
∴四边形BFDE是平行四边形.
21、(1)①证明见解析;②10;(2)线段EF的长度不变,它的长度为2.
.
【解析】
试题分析:(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=AD=4,设OP=x,则CO=8﹣x,由勾股定理得列方程,求出x,最后根据CD=AB=2OP即可求出边CD的长;
(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的结论求出PB的长,最后代入EF=PB即可得出线段EF的长度不变.
试题解析:(1)如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP与△PDA的面积比为1:4,∴=,∴CP=AD=4,设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得 :,解得:x=5,∴CD=AB=AP=2OP=10,∴边CD的长为10;
(2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP,∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,∵∠QFM=∠NFB,∠QMF=∠BNF,MQ=BN,∴△MFQ≌△NFB(AAS),∴QF=QB,∴EF=EQ+QF=PQ+QB=PB,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴PB==,∴EF=PB=,∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为.
考点:翻折变换(折叠问题);矩形的性质;相似形综合题.
22、 (1)抛物线的解析式为:y=﹣x1+x+1
(1)存在,P1(,2),P1(,),P3(,﹣)
(3)当点E运动到(1,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.
【解析】
试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;
(1)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P1,P3;作CH垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;
(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.
试题解析:(1)∵抛物线y=﹣x1+mx+n经过A(﹣1,0),C(0,1).
解得:,
∴抛物线的解析式为:y=﹣x1+x+1;
(1)∵y=﹣x1+x+1,
∴y=﹣(x﹣)1+,
∴抛物线的对称轴是x=.
∴OD=.
∵C(0,1),
∴OC=1.
在Rt△OCD中,由勾股定理,得
CD=.
∵△CDP是以CD为腰的等腰三角形,
∴CP1=CP1=CP3=CD.
作CH⊥x轴于H,
∴HP1=HD=1,
∴DP1=2.
∴P1(,2),P1(,),P3(,﹣);
(3)当y=0时,0=﹣x1+x+1
∴x1=﹣1,x1=2,
∴B(2,0).
设直线BC的解析式为y=kx+b,由图象,得
,
解得:,
∴直线BC的解析式为:y=﹣x+1.
如图1,过点C作CM⊥EF于M,设E(a,﹣a+1),F(a,﹣a1+a+1),
∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).
∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,
=+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),
=﹣a1+2a+(0≤x≤2).
=﹣(a﹣1)1+
∴a=1时,S四边形CDBF的面积最大=,
∴E(1,1).
考点:1、勾股定理;1、等腰三角形的性质;3、四边形的面积;2、二次函数的最值
23、(1)证明见解析;(2)+;(3)的值不变,.
【解析】
(1)根据等腰三角形的性质得到∠ABC=45°,∠ACB=90°,根据圆周角定理得到∠APB=90°,得到∠APC=∠D,根据平行线的判定定理证明;
(2)作BH⊥CP,根据正弦、余弦的定义分别求出CH、PH,计算即可;
(3)证明△CBP∽△ABD,根据相似三角形的性质解答.
【详解】
(1)证明:∵△ABC是等腰直角三角形,且AC=BC,
∴∠ABC=45°,∠ACB=90°,
∴∠APC=∠ABC=45°,
∴AB为⊙O的直径,
∴∠APB=90°,
∵PD=PB,
∴∠PBD=∠D=45°,
∴∠APC=∠D=45°,
∴PC∥BD;
(2)作BH⊥CP,垂足为H,
∵⊙O的半径为2,∠ABP=60°,
∴BC=2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,
在Rt△BCH中,CH=BC•cos∠BCH=,
BH=BC•sin∠BCH=,
在Rt△BHP中,PH=BH=,
∴CP=CH+PH=+;
(3)的值不变,
∵∠BCP=∠BAP,∠CPB=∠D,
∴△CBP∽△ABD,
∴=,
∴=,即=.
【点睛】
本题考查的是圆周角定理、相似三角形的判定和性质以及锐角三角函数的概念,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.
24、(1)见解析;(2)2π.
【解析】
证明:(1)连接OD,
∵AB是直径,
∴∠ADB=90°,即AD⊥BC,
∵AB=AC,
∴AD平分∠BAC,
∴∠OAD=∠CAD,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠ODA=∠CAD,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥EF,
∵OD过O,
∴EF是⊙O的切线.
(2)∵OD⊥DF,
∴∠ODF=90°,
∵∠F=30°,
∴OF=2OD,即OB+3=2OD,
而OB=OD,
∴OD=3,
∵∠AOD=90°+∠F=90°+30°=120°,
∴的长度=.
【点睛】
本题考查了切线的判定和性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了弧长公式.
25、(1)y是x的一次函数,y=-30x+1(2)w=-30x2+780x-31(3)以3元/个的价格销售这批许愿瓶可获得最大利润4元
【解析】
(1)观察可得该函数图象是一次函数,设出一次函数解析式,把其中两点代入即可求得该函数解析式,进而把其余两点的横坐标代入看纵坐标是否与点的纵坐标相同.
(2)销售利润=每个许愿瓶的利润×销售量.
(3)根据进货成本可得自变量的取值,结合二次函数的关系式即可求得相应的最大利润.
【详解】
解:(1)y是x的一次函数,设y=kx+b,
∵图象过点(10,300),(12,240),
∴,解得.∴y=-30x+1.
当x=14时,y=180;当x=16时,y=120,
∴点(14,180),(16,120)均在函数y=-30x+1图象上.
∴y与x之间的函数关系式为y=-30x+1.
(2)∵w=(x-6)(-30x+1)=-30x2+780x-31,
∴w与x之间的函数关系式为w=-30x2+780x-31.
(3)由题意得:6(-30x+1)≤900,解得x≥3.
w=-30x2+780x-31图象对称轴为:.
∵a=-30<0,∴抛物线开口向下,当x≥3时,w随x增大而减小.
∴当x=3时,w最大=4.
∴以3元/个的价格销售这批许愿瓶可获得最大利润4元.
26、见解析
【解析】
试题分析:(1), ,可得∽ ,从而得,
再根据∠BDF=∠CDA 即可证;
(2)由∽ ,可得,从而可得,再由∽,可得从而得,继而可得 ,得到.
试题解析:(1)∵,∴,
∵ ,∴∽ ,
∴,
又∵∠ADB=∠CDE ,∴∠ADB+∠ADF=∠CDE+∠ADF,
即∠BDF=∠CDA ,
∴∽;
(2)∵∽ ,∴,
∵ ,∴,
∵∽,∴,∴,
∴ , ∴.
【点睛】本题考查了相似三角形的性质与判定,能结合图形以及已知条件灵活选择恰当的方法进行证明是关键.
27、(1)甲80件,乙20件;(2)x≤90
【解析】
(1)甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,利用共用2800元,列出方程后求解即可;
(2) 设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据购买这批奖品的总费用不超过2900元列不等式求解即可.
【详解】
解:(1)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,
根据题意得30x+20(100﹣x)=2800,
解得x=80,
则100﹣x=20,
答:甲种奖品购买了80件,乙种奖品购买了20件;
(2)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,
根据题意得:30x+20(100﹣x)≤2900,
解得:x≤90,
【点睛】
本题主要考查一元一次方程与一元一次不等式的应用,根据已知条件正确列出方程与不等式是解题的关键.
广东省广州市越秀区育才实验校2022年毕业升学考试模拟卷数学卷含解析: 这是一份广东省广州市越秀区育才实验校2022年毕业升学考试模拟卷数学卷含解析,共18页。试卷主要包含了下列四个命题中,真命题是,下列事件中,必然事件是等内容,欢迎下载使用。
2022年广东省中山市三校初中数学毕业考试模拟冲刺卷含解析: 这是一份2022年广东省中山市三校初中数学毕业考试模拟冲刺卷含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁,已知,下列命题是真命题的是,下列方程中是一元二次方程的是,﹣的绝对值是等内容,欢迎下载使用。
2022届广东省东莞市寮步镇信义校毕业升学考试模拟卷数学卷含解析: 这是一份2022届广东省东莞市寮步镇信义校毕业升学考试模拟卷数学卷含解析,共25页。