2022年河北省张家口市蔚县重点名校中考冲刺卷数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.若关于x的分式方程的解为正数,则满足条件的正整数m的值为( )
A.1,2,3 B.1,2 C.1,3 D.2,3
2.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )
A.众数 B.平均数 C.中位数 D.方差
3.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为( )
A.5cm B.12cm C.16cm D.20cm
4.若二元一次方程组的解为则的值为( )
A.1 B.3 C. D.
5.y=(m﹣1)x|m|+3m表示一次函数,则m等于( )
A.1 B.﹣1 C.0或﹣1 D.1或﹣1
6.如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,则不等式的解集为( )
A.x>2 B.0<x<4
C.﹣1<x<4 D.x<﹣1 或 x>4
7.如果,那么的值为( )
A.1 B.2 C. D.
8.已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹是( )
A. B.
C. D.
9.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得
A. B.
C. D.
10.如图1,在矩形ABCD中,动点E从A出发,沿A→B→C方向运动,当点E到达点C时停止运动,过点E作EF⊥AE交CD于点F,设点E运动路程为x,CF=y,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:①a=3;②当CF=时,点E的运动路程为或或,则下列判断正确的是( )
A.①②都对 B.①②都错 C.①对②错 D.①错②对
11.有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的( )
A.平均数 B.中位数 C.众数 D.方差
12.若x是2的相反数,|y|=3,则的值是( )
A.﹣2 B.4 C.2或﹣4 D.﹣2或4
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知关于x的一元二次方程有两个相等的实数根,则a的值是______.
14.分解因式:x3﹣2x2+x=______.
15.将一次函数的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.
16.若4a+3b=1,则8a+6b-3的值为______.
17.如图,点A为函数y=(x>0)图象上一点,连接OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为______.
18.分式有意义时,x的取值范围是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某地一路段修建,甲队单独完成这项工程需要60天,若由甲队先做5天,再由甲、乙两队合作9天,共完成这项工程的三分之一.
(1)求甲、乙两队合作完成这项工程需要多少天?
(2)若甲队的工作效率提高20%,乙队工作效率提高50%,甲队施工1天需付工程款4万元,乙队施工一天需付工程款2.5万元,现由甲乙两队合作若干天后,再由乙队完成剩余部分,在完成此项工程的工程款不超过190万元的条件下要求尽早完成此项工程,则甲、乙两队至多要合作多少天?
20.(6分)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.
(1)判断直线AC与圆O的位置关系,并证明你的结论;
(2)若AC=8,cos∠BED=,求AD的长.
21.(6分)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF
(1)判断AF与⊙O的位置关系并说明理由;
(2)若⊙O的半径为4,AF=3,求AC的长.
22.(8分)已知:二次函数满足下列条件:①抛物线y=ax2+bx与直线y=x只有一个交点;②对于任意实数x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.
(1)求二次函数y=ax2+bx的解析式;
(2)若当-2≤x≤r(r≠0)时,恰有t≤y≤1.5r成立,求t和r的值.
23.(8分)我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A、C两地海拔高度约为1000米,山顶B处的海拔高度约为1400米,由B处望山脚A处的俯角为30°,由B处望山脚C处的俯角为45°,若在A、C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据≈1.732)
24.(10分)当=,b=2时,求代数式的值.
25.(10分)如图,已知△ABC中,AB=BC=5,tan∠ABC=.求边AC的长;设边BC的垂直平分线与边AB的交点为D,求的值.
26.(12分)先化简再求值:,其中,.
27.(12分)某校在一次大课间活动中,采用了四种活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.
请结合统计图,回答下列问题:
(1)本次调查学生共 人,a= ,并将条形图补充完整;
(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?
(3)学校让每班在A、B、C、D四种活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
试题分析:解分式方程得:等式的两边都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,且x=4﹣m≠2,
已知关于x的分式方的解为正数,得m=1,m=3,故选C.
考点:分式方程的解.
2、D
【解析】
方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。
【详解】
由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差.
故选D.
3、D
【解析】
解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.
【详解】
延长AB、DC相交于F,则BFC构成直角三角形,
运用勾股定理得:
BC2=(15-3)2+(1-4)2=122+162=400,
所以BC=1.
则剪去的直角三角形的斜边长为1cm.
故选D.
【点睛】
本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.
4、D
【解析】
先解方程组求出,再将代入式中,可得解.
【详解】
解:
,
得,
所以,
因为
所以.
故选D.
【点睛】
本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b的值,本题属于基础题型.
5、B
【解析】
由一次函数的定义知,|m|=1且m-1≠0,所以m=-1,故选B.
6、C
【解析】
看两函数交点坐标之间的图象所对应的自变量的取值即可.
【详解】
∵直线y1=kx+b与直线y2=mx+n分别交x轴于点A(﹣1,0),B(4,0),
∴不等式(kx+b)(mx+n)>0的解集为﹣1<x<4,
故选C.
【点睛】
本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
7、D
【解析】
先对原分式进行化简,再寻找化简结果与已知之间的关系即可得出答案.
【详解】
故选:D.
【点睛】
本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.
8、D
【解析】
试题分析:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,
∴PA+PC=BC.故选D.
考点:作图—复杂作图.
9、A
【解析】
若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.
解:设走路线一时的平均速度为x千米/小时,
故选A.
10、A
【解析】
由已知,AB=a,AB+BC=5,当E在BC上时,如图,可得△ABE∽△ECF,继而根据相似三角形的性质可得y=﹣,根据二次函数的性质可得﹣,由此可得a=3,继而可得y=﹣,把y=代入解方程可求得x1=,x2=,由此可求得当E在AB上时,y=时,x=,据此即可作出判断.
【详解】
解:由已知,AB=a,AB+BC=5,
当E在BC上时,如图,
∵E作EF⊥AE,
∴△ABE∽△ECF,
∴,
∴,
∴y=﹣,
∴当x=时,﹣,
解得a1=3,a2=(舍去),
∴y=﹣,
当y=时,=﹣,
解得x1=,x2=,
当E在AB上时,y=时,
x=3﹣=,
故①②正确,
故选A.
【点睛】
本题考查了二次函数的应用,相似三角形的判定与性质,综合性较强,弄清题意,正确画出符合条件的图形,熟练运用二次函数的性质以及相似三角形的判定与性质是解题的关键.
11、B
【解析】
由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的
中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8
名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的
分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.
故选B.
【点睛】
此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反
映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统
计量进行合理的选择和恰当的运用.
12、D
【解析】
直接利用相反数以及绝对值的定义得出x,y的值,进而得出答案.
【详解】
解:∵x是1的相反数,|y|=3,
∴x=-1,y=±3,
∴y-x=4或-1.
故选D.
【点睛】
此题主要考查了有理数的混合运算,正确得出x,y的值是解题关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、.
【解析】
试题分析:∵关于x的一元二次方程有两个相等的实数根,
∴.
考点:一元二次方程根的判别式.
14、x(x-1)2.
【解析】
由题意得,x3﹣2x2+x= x(x﹣1)2
15、
【解析】
试题分析:解:设y=x+b,
∴3=2+b,解得:b=1.
∴函数解析式为:y=x+1.故答案为y=x+1.
考点:一次函数
点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k的值不变.
16、-1
【解析】
先求出8a+6b的值,然后整体代入进行计算即可得解.
【详解】
∵4a+3b=1,
∴8a+6b=2,
8a+6b-3=2-3=-1;
故答案为:-1.
【点睛】
本题考查了代数式求值,整体思想的利用是解题的关键.
17、6.
【解析】
作辅助线,根据反比例函数关系式得:S△AOD=, S△BOE=,再证明△BOE∽△AOD,由性质得OB与OA的比,由同高两三角形面积的比等于对应底边的比可以得出结论.
【详解】
如图,分别作BE⊥x轴,AD⊥x轴,垂足分别为点E、D,
∴BE∥AD,
∴△BOE∽△AOD,
∴,
∵OA=AC,
∴OD=DC,
∴S△AOD=S△ADC=S△AOC,
∵点A为函数y=(x>0)的图象上一点,
∴S△AOD=,
同理得:S△BOE=,
∴,
∴,
∴,
∴,
∴,
故答案为6.
18、x<1
【解析】
要使代数式有意义时,必有1﹣x>2,可解得x的范围.
【详解】
根据题意得:1﹣x>2,
解得:x<1.
故答案为x<1.
【点睛】
考查了分式和二次根式有意义的条件.二次根式有意义,被开方数为非负数,分式有意义,分母不为2.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)甲、乙两队合作完成这项工程需要36天;(2)甲、乙两队至多要合作7天
【解析】
(1)设甲、乙两队合作完成这项工程需要x天,根据条件:甲队先做5天,再由甲、乙合作9天,共完成总工作量的,列方程求解即可;
(2)设甲、乙两队最多合作元天,先求出甲、乙两队合作一天完成工程的多少,再根据完成此项工程的工程款不超过190万元,列出不等式,求解即可得出答案.
【详解】
(1)设甲、乙两队合作完成这项工程需要x天
根据题意得,,
解得 x=36,
经检验x=36是分式方程的解,
答:甲、乙两队合作完成这项工程需要36天,
(2)
设甲、乙需要合作y天,根据题意得,
,
解得y≤7
答:甲、乙两队至多要合作7天.
【点睛】
本题考查了分式方程的应用和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.
20、(1)AC与⊙O相切,证明参见解析;(2).
【解析】
试题分析:(1)由于OC⊥AD,那么∠OAD+∠AOC=90°,又∠BED=∠BAD,且∠BED=∠C,于是∠OAD=∠C,从而有∠C+∠AOC=90°,再利用三角形内角和定理,可求∠OAC=90°,即AC是⊙O的切线;(2)连接BD,AB是直径,那么∠ADB=90°,在Rt△AOC中,由于AC=8,∠C=∠BED,cos∠BED=,利用三角函数值,可求OA=6,即AB=12,在Rt△ABD中,由于AB=12,∠OAD=∠BED,cos∠BED=,同样利用三角函数值,可求AD.
试题解析:(1)AC与⊙O相切.∵弧BD是∠BED与∠BAD所对的弧,∴∠BAD=∠BED,∵OC⊥AD,∴∠AOC+∠BAD=90°,∴∠BED+∠AOC=90°,即∠C+∠AOC=90°,∴∠OAC=90°,∴AB⊥AC,即AC与⊙O相切;(2)连接BD.∵AB是⊙O直径,∴∠ADB=90°,在Rt△AOC中,∠CAO=90°,∵AC=8,∠ADB=90°,cos∠C=cos∠BED=,∴AO=6,∴AB=12,在Rt△ABD中,∵cos∠OAD=cos∠BED=,∴AD=AB•cos∠OAD=12×=.
考点:1.切线的判定;2.解直角三角形.
21、解:(1)AF与圆O的相切.理由为:
如图,连接OC,
∵PC为圆O切线,∴CP⊥OC.
∴∠OCP=90°.
∵OF∥BC,
∴∠AOF=∠B,∠COF=∠OCB.
∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.
∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,
∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.
∴AF为圆O的切线,即AF与⊙O的位置关系是相切.
(2)∵△AOF≌△COF,∴∠AOF=∠COF.
∵OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC.
∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根据勾股定理得:OF=1.
∵S△AOF=•OA•AF=•OF•AE,∴AE=.
∴AC=2AE=.
【解析】
试题分析:(1)连接OC,先证出∠3=∠2,由SAS证明△OAF≌△OCF,得对应角相等∠OAF=∠OCF,再根据切线的性质得出∠OCF=90°,证出∠OAF=90°,即可得出结论;
(2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE.
试题解析:(1)连接OC,如图所示:
∵AB是⊙O直径,
∴∠BCA=90°,
∵OF∥BC,
∴∠AEO=90°,∠1=∠2,∠B=∠3,
∴OF⊥AC,
∵OC=OA,
∴∠B=∠1,
∴∠3=∠2,
在△OAF和△OCF中,
,
∴△OAF≌△OCF(SAS),
∴∠OAF=∠OCF,
∵PC是⊙O的切线,
∴∠OCF=90°,
∴∠OAF=90°,
∴FA⊥OA,
∴AF是⊙O的切线;
(2)∵⊙O的半径为4,AF=3,∠OAF=90°,
∴OF==1
∵FA⊥OA,OF⊥AC,
∴AC=2AE,△OAF的面积=AF•OA=OF•AE,
∴3×4=1×AE,
解得:AE=,
∴AC=2AE=.
考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质.
22、(1)y=x2+x;(2)t=-4,r=-1.
【解析】
(1)由①联立方程组,根据抛物线y=ax2+bx与直线y=x只有一个交点可以求出b的值,由②可得对称轴为x=1,从而得a的值,进而得出结论;
(2)进行分类讨论,分别求出t和r的值.
【详解】
(1)y=ax2+bx和y=x联立得:ax2+(b+1)x=0,
Δ=0得:(b-1)2=0,得b=1,
∵对称轴为=1,
∴=1,
∴a=,
∴y=x2+x.
(2)因为y=x2+x=(x-1)2+,
所以顶点(1,)
当-2
当x=-2时,y最小=-4,
所以,这时t=-4,r=-1.
当r≥1时,
y最大=,所以1.5r=,
所以r=,不合题意,舍去,
综上可得,t=-4,r=-1.
【点睛】
本题考查二次函数综合题,解题的关键是理解题意,利用二次函数的性质解决问题.
23、隧道最短为1093米.
【解析】
【分析】作BD⊥AC于D,利用直角三角形的性质和三角函数解答即可.
【详解】如图,作BD⊥AC于D,
由题意可得:BD=1400﹣1000=400(米),
∠BAC=30°,∠BCA=45°,
在Rt△ABD中,
∵tan30°=,即,
∴AD=400(米),
在Rt△BCD中,
∵tan45°=,即,
∴CD=400(米),
∴AC=AD+CD=400+400≈1092.8≈1093(米),
答:隧道最短为1093米.
【点睛】本题考查了解直角三角形的应用,正确添加辅助线构建直角三角形是解题的关键.
24、,6﹣3.
【解析】
原式=
=,
当a=,b=2时,
原式.
25、(1)AC=;(2).
【解析】
【分析】(1)过A作AE⊥BC,在直角三角形ABE中,利用锐角三角函数定义求出AC的长即可;
(2)由DF垂直平分BC,求出BF的长,利用锐角三角函数定义求出DF的长,利用勾股定理求出BD的长,进而求出AD的长,即可求出所求.
【详解】(1)如图,过点A作AE⊥BC,
在Rt△ABE中,tan∠ABC=,AB=5,
∴AE=3,BE=4,
∴CE=BC﹣BE=5﹣4=1,
在Rt△AEC中,根据勾股定理得:AC==;
(2)∵DF垂直平分BC,
∴BD=CD,BF=CF=,
∵tan∠DBF=,
∴DF=,
在Rt△BFD中,根据勾股定理得:BD==,
∴AD=5﹣=,
则.
【点睛】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.
26、8
【解析】
原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,合并得到最简结果,将x与y的值代入计算即可求出值.
【详解】
原式==,
当,时,原式=
【点睛】
本题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式、单项式乘以多项式、去括号法则以及合并同类项法则,熟练掌握公式及法则是解本题的关键.
27、(1)300,10; (2)有800人;(3) .
【解析】试题分析:
试题解析:(1)120÷40%=300,
a%=1﹣40%﹣30%﹣20%=10%,
∴a=10,
10%×300=30,
图形如下:
(2)2000×40%=800(人),
答:估计该校选择“跑步”这种活动的学生约有800人;
(3)画树状图为:
共有12种等可能的结果数,其中每班所抽到的两项方式恰好是“跑步”和“跳绳”的结果数为2,
所以每班所抽到的两项方式恰好是“跑步”和“跳绳”的概率=.
考点:1.用样本估计总体;2.扇形统计图;3.条形统计图;4.列表法与树状图法.
河北省张家口市蔚县2022年中考数学全真模拟试题含解析: 这是一份河北省张家口市蔚县2022年中考数学全真模拟试题含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,不等式组的解集在数轴上表示为,下列运算结果正确的是等内容,欢迎下载使用。
河北省张家口市蔚县重点名校2021-2022学年十校联考最后数学试题含解析: 这是一份河北省张家口市蔚县重点名校2021-2022学年十校联考最后数学试题含解析,共27页。试卷主要包含了已知,下列说法中,不正确的是,下列调查中适宜采用抽样方式的是等内容,欢迎下载使用。
2022年泰州市重点名校中考冲刺卷数学试题含解析: 这是一份2022年泰州市重点名校中考冲刺卷数学试题含解析,共19页。试卷主要包含了答题时请按要求用笔,下列图形中,是轴对称图形的是等内容,欢迎下载使用。