2022年安徽省马鞍山市雨山建中学中考数学模拟预测题含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.若关于x的不等式组无解,则a的取值范围是( )
A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3
2.下列运算正确的是( )
A. =2 B.4﹣=1 C.=9 D.=2
3.地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为( )
A.64×105 B.6.4×105 C.6.4×106 D.6.4×107
4.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加( )
A.4cm B.8cm C.(a+4)cm D.(a+8)cm
5.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )
A. B. C. D.
6.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( )
A. B. C. D.
7.对于非零的两个实数、,规定,若,则的值为( )
A. B. C. D.
8.实数a,b,c在数轴上对应点的位置大致如图所示,O为原点,则下列关系式正确的是( )
A.a﹣c<b﹣c B.|a﹣b|=a﹣b C.ac>bc D.﹣b<﹣c
9.下列说法中,错误的是( )
A.两个全等三角形一定是相似形 B.两个等腰三角形一定相似
C.两个等边三角形一定相似 D.两个等腰直角三角形一定相似
10.下面调查中,适合采用全面调查的是( )
A.对南宁市市民进行“南宁地铁1号线线路”
B.对你安宁市食品安全合格情况的调查
C.对南宁市电视台《新闻在线》收视率的调查
D.对你所在的班级同学的身高情况的调查
二、填空题(本大题共6个小题,每小题3分,共18分)
11.二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)的图象如图所示,则a+b+2c__________0(填“>”“=”或“<”).
12.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为2,则k1-k2=________.
13.如图所示,D、E之间要挖建一条直线隧道,为计算隧道长度,工程人员在线段AD和AE上选择了测量点B,C,已知测得AD=100,AE=200,AB=40,AC=20,BC=30,则通过计算可得DE长为_____.
14.写出一个一次函数,使它的图象经过第一、三、四象限:______.
15.解不等式组
请结合题意填空,完成本题的解答.
(1)解不等式①,得________;
(2)解不等式②,得________;
(3)把不等式①和②的解集在数轴上表示出来;
(4)原不等式组的解集为___________.
16.如图,为的直径,与相切于点,弦.若,则______.
三、解答题(共8题,共72分)
17.(8分)如图,已知一次函数y=x+m的图象与x轴交于点A(﹣4,0),与二次函数y=ax1+bx+c的图象交于y轴上一点B,该二次函数的顶点C在x轴上,且OC=1.
(1)求点B坐标;
(1)求二次函数y=ax1+bx+c的解析式;
(3)设一次函数y=x+m的图象与二次函数y=ax1+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD是以BD为直角边的直角三角形,求点P的坐标.
18.(8分)如图,∠BAC的平分线交△ABC的外接圆于点D,交BC于点F,∠ABC的平分线交AD于点E.
(1)求证:DE=DB:
(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径;
(3)若BD=6,DF=4,求AD的长
19.(8分)已知:在△ABC中,AC=BC,D,E,F分别是AB,AC,CB的中点.
求证:四边形DECF是菱形.
20.(8分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.降价前商场每月销售该商品的利润是多少元?要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?
21.(8分)如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(4,6),点P为线段OA上一动点(与点O、A不重合),连接CP,过点P作PE⊥CP交AB于点D,且PE=PC,过点P作PF⊥OP且PF=PO(点F在第一象限),连结FD、BE、BF,设OP=t.
(1)直接写出点E的坐标(用含t的代数式表示): ;
(2)四边形BFDE的面积记为S,当t为何值时,S有最小值,并求出最小值;
(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.
22.(10分)边长为6的等边△ABC 中,点D ,E 分别在AC ,BC 边上,DE∥AB,EC =2
如图1,将△DEC 沿射线EC 方向平移,得到△D′E′C′,边D′E′与AC 的交点为M ,边C′D′与∠ACC′的角平分线交于点N.当CC′多大时,四边形MCND′为菱形?并说明理由.如图2,将△DEC 绕点C 旋转∠α(0°<α<360°),得到△D ′E′C,连接AD′,BE′.边D′E′的中点为P.
①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;
②连接AP ,当AP 最大时,求AD′的值.(结果保留根号)
23.(12分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.
(1)求证:EF是⊙O的切线.
(2)如果⊙O的半径为5,sin∠ADE=,求BF的长.
24.如图,在▱ABCD中,以点4为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并廷长交BC于点E,连接EF
(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;
(2)若AB=2,AE=2,求∠BAD的大小.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.
【详解】∵不等式组无解,
∴a﹣4≥3a+2,
解得:a≤﹣3,
故选A.
【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.
2、A
【解析】
根据二次根式的性质对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的乘法法则对D进行判断.
【详解】
A、原式=2,所以A选项正确;
B、原式=4-3=,所以B选项错误;
C、原式==3,所以C选项错误;
D、原式=,所以D选项错误.
故选A.
【点睛】
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
3、C
【解析】
由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:6400000=6.4×106,
故选C.
点睛:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4、B
【解析】
【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.
【详解】∵原正方形的周长为acm,
∴原正方形的边长为cm,
∵将它按图的方式向外等距扩1cm,
∴新正方形的边长为(+2)cm,
则新正方形的周长为4(+2)=a+8(cm),
因此需要增加的长度为a+8﹣a=8cm,
故选B.
【点睛】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式.
5、C
【解析】
试题分析:由题意可得BQ=x.
①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=BP•BQ,解y=•3x•x=;故A选项错误;
②1<x≤2时,P点在CD边上,则△BPQ的面积=BQ•BC,解y=•x•3=;故B选项错误;
③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=AP•BQ,解y=•(9﹣3x)•x=;故D选项错误.
故选C.
考点:动点问题的函数图象.
6、B
【解析】
根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.
【详解】
连接BD,
∵四边形ABCD是菱形,∠A=60°,
∴∠ADC=120°,
∴∠1=∠2=60°,
∴△DAB是等边三角形,
∵AB=2,
∴△ABD的高为,
∵扇形BEF的半径为2,圆心角为60°,
∴∠4+∠5=60°,∠3+∠5=60°,
∴∠3=∠4,
设AD、BE相交于点G,设BF、DC相交于点H,
在△ABG和△DBH中,
,
∴△ABG≌△DBH(ASA),
∴四边形GBHD的面积等于△ABD的面积,
∴图中阴影部分的面积是:S扇形EBF-S△ABD=
=.
故选B.
7、D
【解析】
试题分析:因为规定,所以,所以x=,经检验x=是分式方程的解,故选D.
考点:1.新运算;2.分式方程.
8、A
【解析】
根据数轴上点的位置确定出a,b,c的范围,判断即可.
【详解】
由数轴上点的位置得:a<b<0<c,
∴ac<bc,|a﹣b|=b﹣a,﹣b>﹣c,a﹣c<b﹣c.
故选A.
【点睛】
考查了实数与数轴,弄清数轴上点表示的数是解本题的关键.
9、B
【解析】
根据相似图形的定义,结合选项中提到的图形,对选项一一分析,选出正确答案.
【详解】
解:A、两个全等的三角形一定相似,正确;
B、两个等腰三角形一定相似,错误,等腰三角形的形状不一定相同;
C、两个等边三角形一定相似;正确,等边三角形形状相同,只是大小不同;
D、两个等腰直角三角形一定相似,正确,等腰直角三角形形状相同,只是大小不同.
故选B.
【点睛】
本题考查的是相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.特别注意,本题是选择错误的,一定要看清楚题.
10、D
【解析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
A、对南宁市市民进行“南宁地铁1号线线路”适宜采用抽样调查方式;
B、对你安宁市食品安全合格情况的调查适宜采用抽样调查方式;
C、对南宁市电视台《新闻在线》收视率的调查适宜采用抽样调查方式;
D、对你所在的班级同学的身高情况的调查适宜采用普查方式;
故选D.
【点睛】
本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、<
【解析】
由抛物线开口向下,则a<0,抛物线与y轴交于y轴负半轴,则c<0,对称轴在y轴左侧,则b<0,因此可判断a+b+2c与0的大小
【详解】
∵抛物线开口向下
∴a<0
∵抛物线与y轴交于y轴负半轴,
∴c<0
∵对称轴在y轴左侧
∴﹣<0
∴b<0
∴a+b+2c<0
故答案为<.
【点睛】
本题考查了二次函数图象与系数的关系,正确利用图象得出正确信息是解题关键.
12、2
【解析】
试题分析:∵反比例函数(x>1)及(x>1)的图象均在第一象限内,
∴>1,>1.
∵AP⊥x轴,∴S△OAP=,S△OBP=,
∴S△OAB=S△OAP﹣S△OBP==2,
解得:=2.
故答案为2.
13、1.
【解析】
先根据相似三角形的判定得出△ABC∽△AED,再利用相似三角形的性质解答即可.
【详解】
∵
∴
又∵∠A=∠A,
∴△ABC∽△AED,
∴
∵BC=30,
∴DE=1,
故答案为1.
【点睛】
考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.
14、y=x﹣1 (答案不唯一)
【解析】
一次函数图象经过第一、三、四象限,则可知y=kx+b中k>0,b<0,由此可得如:y=x﹣1 (答案不唯一).
15、(1)x<1;(2)x≥﹣2;(1)见解析;(4)﹣2≤x<1;
【解析】
(1)先移项,再合并同类项,求出不等式1的解集即可;
(2)先去分母、移项,再合并同类项,求出不等式2的解集即可;
(1)把两不等式的解集在数轴上表示出来即可;
(4)根据数轴上不等式的解集,求出其公共部分即可.
【详解】
(1)解不等式①,得:x<1;
(2)解不等式②,得:x≥﹣2;
(1)把不等式①和②的解集在数轴上表示出来如下:
(4)原不等式组的解集为:﹣2≤x<1,
故答案为:x<1、x≥﹣2、﹣2≤x<1.
【点睛】
本题主要考查一元一次不等式组的解法及在数轴上的表示。
16、1
【解析】
利用切线的性质得,利用直角三角形两锐角互余可得,再根据平行线的性质得到,,然后根据等腰三角形的性质求出的度数即可.
【详解】
∵与相切于点,
∴AC⊥AB,
∴,
∴,
∵,
∴,,
∵,
∴,
∴.
故答案为1.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
三、解答题(共8题,共72分)
17、(1)B(0,1);(1)y=0.5x1﹣1x+1;(3)P1(1,0)和P1(7.15,0);
【解析】
(1)根据y=0.5x+m交x轴于点A,进而得出m的值,再利用与y轴交于点B,即可得出B点坐标;(1)二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1.得出可设二次函数y=ax1+bx+c=a(x﹣1)1,进而求出即可;(3)根据当B为直角顶点,当D为直角顶点时,分别利用三角形相似对应边成比例求出即可.
【详解】
(1)∵y=x+1交x轴于点A(﹣4,0),
∴0=×(﹣4)+m,
∴m=1,
与y轴交于点B,
∵x=0,
∴y=1
∴B点坐标为:(0,1),
(1)∵二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1
∴可设二次函数y=a(x﹣1)1
把B(0,1)代入得:a=0.5
∴二次函数的解析式:y=0.5x1﹣1x+1;
(3)(Ⅰ)当B为直角顶点时,过B作BP1⊥AD交x轴于P1点
由Rt△AOB∽Rt△BOP1
∴,
∴,
得:OP1=1,
∴P1(1,0),
(Ⅱ)作P1D⊥BD,连接BP1,
将y=0.5x+1与y=0.5x1﹣1x+1联立求出两函数交点坐标:
D点坐标为:(5,4.5),
则AD=,
当D为直角顶点时
∵∠DAP1=∠BAO,∠BOA=∠ADP1,
∴△ABO∽△AP1D,
∴, ,
解得:AP1=11.15,
则OP1=11.15﹣4=7.15,
故P1点坐标为(7.15,0);
∴点P的坐标为:P1(1,0)和P1(7.15,0).
【点睛】
此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解.
18、(1)见解析;(2)2 (3)1
【解析】
(1)通过证明∠BED=∠DBE得到DB=DE;
(2)连接CD,如图,证明△DBC为等腰直角三角形得到BC=BD=4,从而得到△ABC外接圆的半径;
(3)证明△DBF∽△ADB,然后利用相似比求AD的长.
【详解】
(1)证明:∵AD平分∠BAC,BE平分∠ABD,
∴∠1=∠2,∠3=∠4,
∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,
∴DB=DE;
(2)解:连接CD,如图,
∵∠BAC=10°,
∴BC为直径,
∴∠BDC=10°,
∵∠1=∠2,
∴DB=BC,
∴△DBC为等腰直角三角形,
∴BC=BD=4,
∴△ABC外接圆的半径为2;
(3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,
∴△DBF∽△ADB,
∴=,即=,
∴AD=1.
【点睛】
本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和相似三角形的判定与性质.
19、见解析
【解析】
证明:∵D、E是AB、AC的中点
∴DE=BC,EC=AC
∵D、F是AB、BC的中点
∴DF=AC,FC=BC
∴DE=FC=BC,EC=DF=AC
∵AC=BC
∴DE=EC=FC=DF
∴四边形DECF是菱形
20、 (1) 4800元;(2) 降价60元.
【解析】
试题分析:(1)先求出降价前每件商品的利润,乘以每月销售的数量就可以得出每月的总利润;(2)设每件商品应降价x元,由销售问题的数量关系“每件商品的利润×商品的销售数量=总利润”列出方程,解方程即可解决问题.
试题解析:
(1)由题意得60×(360-280)=4800(元).即降价前商场每月销售该商品的利润是4800元;
(2)设每件商品应降价x元,
由题意得(360-x-280)(5x+60)=7200,
解得x1=8,x2=60.
要更有利于减少库存,则x=60.
即要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.
点睛:本题考查了列一元二次方程解实际问题的销售问题,解答时根据销售问题的数量关系建立方程是关键.
21、 (1)、(t+6,t);(2)、当t=2时,S有最小值是16;(3)、理由见解析.
【解析】
(1)如图所示,过点E作EG⊥x轴于点G,则∠COP=∠PGE=90°,
由题意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,
∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,
又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,
在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),
∴CO=PG=6、OP=EG=t,则OG=OP+PG=6+t,则点E的坐标为(t+6,t),
(2)∵DA∥EG,∴△PAD∽△PGE,∴,∴,
∴AD=t(4﹣t),
∴BD=AB﹣AD=6﹣t(4﹣t)=t2﹣t+6,
∵EG⊥x轴、FP⊥x轴,且EG=FP,
∴四边形EGPF为矩形,∴EF⊥BD,EF=PG,
∴S四边形BEDF=S△BDF+S△BDE=×BD×EF=×(t2﹣t+6)×6=(t﹣2)2+16,
∴当t=2时,S有最小值是16;
(3)①假设∠FBD为直角,则点F在直线BC上,
∵PF=OP<AB,
∴点F不可能在BC上,即∠FBD不可能为直角;
②假设∠FDB为直角,则点D在EF上,
∵点D在矩形的对角线PE上,
∴点D不可能在EF上,即∠FDB不可能为直角;
③假设∠BFD为直角且FB=FD,则∠FBD=∠FDB=45°,
如图2,作FH⊥BD于点H,
则FH=PA,即4﹣t=6﹣t,方程无解,
∴假设不成立,即△BDF不可能是等腰直角三角形.
22、 (1) 当CC'=时,四边形MCND'是菱形,理由见解析;(2)①AD'=BE',理由见解析;②.
【解析】
(1)先判断出四边形MCND'为平行四边形,再由菱形的性质得出CN=CM,即可求出CC';
(2)①分两种情况,利用旋转的性质,即可判断出△ACD≌△BCE'即可得出结论;
②先判断出点A,C,P三点共线,先求出CP,AP,最后用勾股定理即可得出结论.
【详解】
(1)当CC'=时,四边形MCND'是菱形.
理由:由平移的性质得,CD∥C'D',DE∥D'E',
∵△ABC是等边三角形,
∴∠B=∠ACB=60°,
∴∠ACC'=180°-∠ACB=120°,
∵CN是∠ACC'的角平分线,
∴∠D'E'C'=∠ACC'=60°=∠B,
∴∠D'E'C'=∠NCC',
∴D'E'∥CN,
∴四边形MCND'是平行四边形,
∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,
∴△MCE'和△NCC'是等边三角形,
∴MC=CE',NC=CC',
∵E'C'=2,
∵四边形MCND'是菱形,
∴CN=CM,
∴CC'=E'C'=;
(2)①AD'=BE',
理由:当α≠180°时,由旋转的性质得,∠ACD'=∠BCE',
由(1)知,AC=BC,CD'=CE',
∴△ACD'≌△BCE',
∴AD'=BE',
当α=180°时,AD'=AC+CD',BE'=BC+CE',
即:AD'=BE',
综上可知:AD'=BE'.
②如图连接CP,
在△ACP中,由三角形三边关系得,AP<AC+CP,
∴当点A,C,P三点共线时,AP最大,
如图1,
在△D'CE'中,由P为D'E的中点,得AP⊥D'E',PD'=,
∴CP=3,
∴AP=6+3=9,
在Rt△APD'中,由勾股定理得,AD'=.
【点睛】
此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(1)的关键是四边形MCND'是平行四边形,解(2)的关键是判断出点A,C,P三点共线时,AP最大.
23、(1)答案见解析;(2).
【解析】
试题分析:(1)连接OD,AB为⊙O的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;
(2)由∠DAC=∠DAB,根据等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可计算出AD=8,在Rt△ADE中可计算出AE=,然后由OD∥AE,得△FDO∽△FEA,再利用相似比可计算出BF.
试题解析:(1)证明:连结OD
∵OD=OB∴∠ODB=∠DBO
又AB=AC
∴∠DBO=∠C
∴∠ODB =∠C
∴OD ∥AC
又DE⊥AC
∴DE ⊥OD
∴EF是⊙O的切线.
(2)∵AB是直径
∴∠ADB=90 °
∴∠ADC=90 °
即∠1+∠2=90 °又∠C+∠2=90 °
∴∠1=∠C
∴∠1 =∠3
∴
∴
∴AD=8
在Rt△ADB中,AB=10∴BD=6
在又Rt△AED中,
∴
设BF=x
∵OD ∥AE
∴△ODF∽△AEF
∴ ,即,
解得:x=
24、 (1)见解析;(2) 60°.
【解析】
(1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明;
(2)连结BF,交AE于G.根据菱形的性质得出AB=2,AG=AE=,∠BAF=2∠BAE,AE⊥BF.然后解直角△ABG,求出∠BAG=30°,那么∠BAF=2∠BAE=60°.
【详解】
解:(1)在△AEB和△AEF中,
,
∴△AEB≌△AEF,
∴∠EAB=∠EAF,
∵AD∥BC,
∴∠EAF=∠AEB=∠EAB,
∴BE=AB=AF.
∵AF∥BE,
∴四边形ABEF是平行四边形,
∵AB=BE,
∴四边形ABEF是菱形;
(2)连结BF,交AE于G.
∵AB=AF=2,
∴GA=AE=×2=,
在Rt△AGB中,cos∠BAE==,
∴∠BAG=30°,
∴∠BAF=2∠BAG=60°,
【点睛】
本题考查了平行四边形的性质与菱形的判定与性质,解题的关键是熟练的掌握平行四边形的性质与菱形的判定与性质.
2023年安徽省马鞍山市雨山区花园初级中学二模数学试卷(含解析): 这是一份2023年安徽省马鞍山市雨山区花园初级中学二模数学试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年安徽省马鞍山市雨山区花园初级中学中考数学适应性试卷(含解析): 这是一份2023年安徽省马鞍山市雨山区花园初级中学中考数学适应性试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年安徽省马鞍山市雨山区花园初级中学中考数学一模试卷(含解析): 这是一份2023年安徽省马鞍山市雨山区花园初级中学中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。