2022年北京市北京理工大附中中考试题猜想数学试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.不解方程,判别方程2x2﹣3x=3的根的情况( )
A.有两个相等的实数根 B.有两个不相等的实数根
C.有一个实数根 D.无实数根
2.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为( )
A.5 B.6 C.8 D.12
3.如图,矩形是由三个全等矩形拼成的,与,,,,分别交于点,设,,的面积依次为,,,若,则的值为( )
A.6 B.8 C.10 D.12
4.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )
A.点M B.点N C.点P D.点Q
5.如图是某零件的示意图,它的俯视图是( )
A. B. C. D.
6.在如图所示的计算程序中,y与x之间的函数关系所对应的图象应为( )
A. B. C. D.
7.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )
A. B. C. D.
8.一个几何体的三视图如图所示,那么这个几何体是( )
A. B. C. D.
9.计算﹣2+3的结果是( )
A.1 B.﹣1 C.﹣5 D.﹣6
10.如图,在直角坐标系xOy中,若抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域(不包括直线y=﹣2和x轴),则l与直线y=﹣1交点的个数是( )
A.0个 B.1个或2个
C.0个、1个或2个 D.只有1个
11.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( )
A. B. C. D.π
12.分式方程=1的解为( )
A.x=1 B.x=0 C.x=﹣ D.x=﹣1
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.若a+b=3,ab=2,则a2+b2=_____.
14.有下列各式:①;②;③;④.其中,计算结果为分式的是_____.(填序号)
15.比较大小:3_________ (填<,>或=).
16.为了求1+2+22+23+…+22016+22017的值,
可令S=1+2+22+23+…+22016+22017,
则2S=2+22+23+24+…+22017+22018,
因此2S﹣S=22018﹣1,
所以1+22+23+…+22017=22018﹣1.
请你仿照以上方法计算1+5+52+53+…+52017的值是_____.
17.若式子有意义,则x的取值范围是 .
18.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为,随机取出一个小球后不放回,再随机取出一个小球,则两次取出的小球标号的和等于4的概率是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.求口袋中黄球的个数;甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;
20.(6分)如图,一位测量人员,要测量池塘的宽度 的长,他过 两点画两条相交于点 的射线,在射线上取两点 ,使 ,若测得 米,他能求出 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.
21.(6分)为了保证端午龙舟赛在我市汉江水域顺利举办,某部门工作人员乘快艇到汉江水域考察水情,以每秒10米的速度沿平行于岸边的赛道AB由西向东行驶.在A处测得岸边一建筑物P在北偏东30°方向上,继续行驶40秒到达B处时,测得建筑物P在北偏西60°方向上,如图所示,求建筑物P到赛道AB的距离(结果保留根号).
22.(8分)解不等式:3x﹣1>2(x﹣1),并把它的解集在数轴上表示出来.
23.(8分)先化简,再求值:,其中m=2.
24.(10分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.
该班共有 名留守学生,B类型留守学生所在扇形的圆心角的度数为 ;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?
25.(10分)计算:|﹣2|+2cos30°﹣(﹣)2+(tan45°)﹣1
26.(12分)某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:求被调查的学生人数;补全条形统计图;已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?
27.(12分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.设x天后每千克苹果的价格为p元,写出p与x的函数关系式;若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
一元二次方程的根的情况与根的判别式有关,
,方程有两个不相等的实数根,故选B
2、B
【解析】
试题分析:由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,进而得出AE=2AO=1.
故选B.
考点:1、作图﹣基本作图,2、平行四边形的性质,3、勾股定理,4、平行线的性质
3、B
【解析】
由条件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ与△DKM的相似比为,△BPQ与△CNH相似比为,由相似三角形的性质,就可以求出,从而可以求出.
【详解】
∵矩形AEHC是由三个全等矩形拼成的,
∴AB=BD=CD,AE∥BF∥DG∥CH,
∴∠BQP=∠DMK=∠CHN,
∴△ABQ∽△ADM,△ABQ∽△ACH,
∴,,
∵EF=FG= BD=CD,AC∥EH,
∴四边形BEFD、四边形DFGC是平行四边形,
∴BE∥DF∥CG,
∴∠BPQ=∠DKM=∠CNH,
又∵∠BQP=∠DMK=∠CHN,
∴△BPQ∽△DKM,△BPQ∽△CNH,
∴,,
即,,
,
∴,即,
解得:,
∴,
故选:B.
【点睛】
本题考查了矩形的性质,平行四边形的判定和性质,相似三角形的判定与性质,三角形的面积公式,得出S2=4S1,S3=9S1是解题关键.
4、C
【解析】
试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.
考点:有理数大小比较.
5、C
【解析】
物体的俯视图,即是从上面看物体得到的结果;根据三视图的定义,从上面看物体可以看到是一个正六边形,里面是一个没有圆心的圆,由此可以确定答案.
【详解】
从上面看是一个正六边形,里面是一个没有圆心的圆.
故答案选C.
【点睛】
本题考查了几何体的三视图,解题的关键是熟练的掌握几何体三视图的定义.
6、D
【解析】
先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.
【详解】
由题意知,函数关系为一次函数y=-1x+4,由k=-1<0可知,y随x的增大而减小,且当x=0时,y=4,
当y=0时,x=1.
故选D.
【点睛】
本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解.
7、A
【解析】
首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.
【详解】
画树状图如下:
由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,
∴两次都摸到黄球的概率为,
故选A.
【点睛】
此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
8、C
【解析】
由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱.故选C.
9、A
【解析】
根据异号两数相加的法则进行计算即可.
【详解】
解:因为-2,3异号,且|-2|<|3|,所以-2+3=1.
故选A.
【点睛】
本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.
10、C
【解析】
根据题意,利用分类讨论的数学思想可以得到l与直线y=﹣1交点的个数,从而可以解答本题.
【详解】
∵抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域,开口向下,
∴当顶点D位于直线y=﹣1下方时,则l与直线y=﹣1交点个数为0,
当顶点D位于直线y=﹣1上时,则l与直线y=﹣1交点个数为1,
当顶点D位于直线y=﹣1上方时,则l与直线y=﹣1交点个数为2,
故选C.
【点睛】
考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用函数的思想和分类讨论的数学思想解答.
11、A
【解析】
试题解析:如图,
∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,
∴BC=ACtan60°=1×=,AB=2
∴S△ABC=AC•BC=.
根据旋转的性质知△ABC≌△AB′C′,则S△ABC=S△AB′C′,AB=AB′.
∴S阴影=S扇形ABB′+S△AB′C′-S△ABC
=
=.
故选A.
考点:1.扇形面积的计算;2.旋转的性质.
12、C
【解析】
首先找出分式的最简公分母,进而去分母,再解分式方程即可.
【详解】
解:去分母得:
x2-x-1=(x+1)2,
整理得:-3x-2=0,
解得:x=-,
检验:当x=-时,(x+1)2≠0,
故x=-是原方程的根.
故选C.
【点睛】
此题主要考查了解分式方程的解法,正确掌握解题方法是解题关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
根据a2+b2=(a+b)2-2ab,代入计算即可.
【详解】
∵a+b=3,ab=2,
∴a2+b2=(a+b)2﹣2ab=9﹣4=1.
故答案为:1.
【点睛】
本题考查对完全平方公式的变形应用能力,要熟记有关完全平方的几个变形公式.
14、②④
【解析】
根据分式的定义,将每个式子计算后,即可求解.
【详解】
=1不是分式,=,=3不是分式,=故选②④.
【点睛】
本题考查分式的判断,解题的关键是清楚分式的定义.
15、<
【解析】
【分析】根据实数大小比较的方法进行比较即可得答案.
【详解】∵32=9,9<10,
∴3<,
故答案为:<.
【点睛】本题考查了实数大小的比较,熟练掌握实数大小比较的方法是解题的关键.
16、
【解析】
根据上面的方法,可以令S=1+5+52+53+…+52017,则5S=5+52+53+…+52012+52018,再相减算出S的值即可.
【详解】
解:令S=1+5+52+53+…+52017,
则5S=5+52+53+…+52012+52018,
5S﹣S=﹣1+52018,
4S=52018﹣1,
则S=,
故答案为:.
【点睛】
此题参照例子,采用类比的方法就可以解决,注意这里由于都是5的次方,所以要用5S来达到抵消的目的.
17、且
【解析】
∵式子在实数范围内有意义,
∴x+1≥0,且x≠0,
解得:x≥-1且x≠0.
故答案为x≥-1且x≠0.
18、
【解析】
试题解析:画树状图得:
由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率=,
故答案为.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1)1;(2)
【解析】
(1)设口袋中黄球的个数为x个,根据从中任意摸出一个球是红球的概率为和概率公式列出方程,解方程即可求得答案;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;
【详解】
解:(1)设口袋中黄球的个数为个,
根据题意得:
解得:=1
经检验:=1是原分式方程的解
∴口袋中黄球的个数为1个
(2)画树状图得:
∵共有12种等可能的结果,两次摸出都是红球的有2种情况
∴两次摸出都是红球的概率为: .
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.
20、可以求出A、B之间的距离为111.6米.
【解析】
根据,(对顶角相等),即可判定,根据相似三角形的性质得到,即可求解.
【详解】
解:∵,(对顶角相等),
∴,
∴,
∴,
解得米.
所以,可以求出、之间的距离为米
【点睛】
考查相似三角形的应用,掌握相似三角形的判定方法和性质是解题的关键.
21、100米.
【解析】
【分析】如图,作PC⊥AB于C,构造出Rt△PAC与Rt△PBC,求出AB的长度,利用特殊角的三角函数值进行求解即可得.
【详解】如图,过P点作PC⊥AB于C,
由题意可知:∠PAC=60°,∠PBC=30°,
在Rt△PAC中,tan∠PAC=,∴AC=PC,
在Rt△PBC中,tan∠PBC=,∴BC=PC,
∵AB=AC+BC=PC+PC=10×40=400,
∴PC=100,
答:建筑物P到赛道AB的距离为100米.
【点睛】本题考查了解直角三角形的应用,正确添加辅助线构造直角三角形,利用特殊角的三角函数值进行解答是关键.
22、
【解析】
试题分析:按照解一元一次不等式的步骤解不等式即可.
试题解析:,
,
.
解集在数轴上表示如下
点睛:解一元一次不等式一般步骤:去分母,去括号,移项,合并同类项,把系数化为1.
23、,原式.
【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把m的值代入计算即可求出值.
【详解】
原式,
当m=2时,原式.
【点睛】
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
24、(1)10,144;(2)详见解析;(3)96
【解析】
(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;
(2)依据D类型留守学生的数量,即可将条形统计图补充完整;
(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.
【详解】
解:(1)2÷20%=10(人),
×100%×360°=144°,
故答案为10,144;
(2)10﹣2﹣4﹣2=2(人),
如图所示:
(3)2400××20%=96(人),
答:估计该校将有96名留守学生在此关爱活动中受益.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
25、1
【解析】
本题涉及绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方5个考点,先针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.
【详解】
解:原式=2﹣+2×﹣3+1
=1.
【点睛】
本题考查实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方等考点的运算.
26、(4)60;(4)作图见试题解析;(4)4.
【解析】
试题分析:(4)利用科普类的人数以及所占百分比,即可求出被调查的学生人数;
(4)利用(4)中所求得出喜欢艺体类的学生数进而画出图形即可;
(4)首先求出样本中喜爱文学类图书所占百分比,进而估计全校最喜爱文学类图书的学生数.
试题解析:(4)被调查的学生人数为:44÷40%=60(人);
(4)喜欢艺体类的学生数为:60-44-44-46=8(人),
如图所示:
全校最喜爱文学类图书的学生约有:4400×=4(人).
考点:4.条形统计图;4.用样本估计总体;4.扇形统计图.
27、;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.
【解析】
(1)根据按每千克元的市场价收购了这种苹果千克,此后每天每千克苹果价格会上涨元,进而得出天后每千克苹果的价格为元与的函数关系;
(2)根据每千克售价乘以销量等于销售总金额,求出即可;
(3)利用总售价-成本-费用=利润,进而求出即可.
【详解】
根据题意知,;
.
当时,最大利润12500元,
答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.
【点睛】
此题主要考查了二次函数的应用以及二次函数最值求法,得出与的函数关系是解题关键.
2022年北京理工大附中分校中考数学全真模拟试卷含解析: 这是一份2022年北京理工大附中分校中考数学全真模拟试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,的绝对值是,下列命题中真命题是等内容,欢迎下载使用。
2022届北京市第一五九中学中考试题猜想数学试卷含解析: 这是一份2022届北京市第一五九中学中考试题猜想数学试卷含解析,共16页。试卷主要包含了考生要认真填写考场号和座位序号,下列各数中负数是,若a与﹣3互为倒数,则a=等内容,欢迎下载使用。
2022届北京市师范大附属中学中考试题猜想数学试卷含解析: 这是一份2022届北京市师范大附属中学中考试题猜想数学试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列各数,一个正比例函数的图象过点等内容,欢迎下载使用。