2022届浙江省奉化市溪口中学中考数学模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为( )
A.25° B.50° C.60° D.30°
2.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是( )
A.t< B.t> C.t≤ D.t≥
3.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是( )
A. B. C. D.
4.如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2, 交x轴于点A2;将C2绕点A2旋转180°得C3, 交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为( )
A.4 B.﹣4 C.﹣6 D.6
5.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将以DE为折痕向右折叠,AE与BC交于点F,则的面积为( )
A.4 B.6 C.8 D.10
6.下列图形中,不是中心对称图形的是( )
A.平行四边形 B.圆 C.等边三角形 D.正六边形
7.下列运算结果正确的是( )
A.x2+2x2=3x4 B.(﹣2x2)3=8x6
C.x2•(﹣x3)=﹣x5 D.2x2÷x2=x
8.实数a在数轴上的位置如图所示,则化简后为( )
A.7 B.﹣7 C.2a﹣15 D.无法确定
9.一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是( )
A.6π B.4π C.8π D.4
10.如图,若AB∥CD,则α、β、γ之间的关系为( )
A.α+β+γ=360° B.α﹣β+γ=180°
C.α+β﹣γ=180° D.α+β+γ=180°
二、填空题(共7小题,每小题3分,满分21分)
11.方程组的解一定是方程_____与_____的公共解.
12.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.做法中用到全等三角形判定的依据是______.
13.如图,直线与轴交于点,与轴交于点,点在轴的正半轴上,,过点作轴交直线于点,若反比例函数的图象经过点,则的值为_________________.
14.已知菱形的周长为10cm,一条对角线长为6cm,则这个菱形的面积是_____cm1.
15.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣2x2﹣2x+1=﹣x2+5x﹣3:则所捂住的多项式是___.
16.如图,在△ABC中,∠ACB=90°,点D是CB边上一点,过点D作DE⊥AB于点E,点F是AD的中点,连结EF、FC、CE.若AD=2,∠CFE=90°,则CE=_____.
17.已知点 M(1,2)在反比例函数的图象上,则 k=____.
三、解答题(共7小题,满分69分)
18.(10分)某通讯公司推出了A,B两种上宽带网的收费方式(详情见下表)
设月上网时间为x h(x为非负整数),请根据表中提供的信息回答下列问题
(1)设方案A的收费金额为y1元,方案B的收费金额为y2元,分别写出y1,y2关于x的函数关系式;
(2)当35<x<50时,选取哪种方式能节省上网费,请说明理由
19.(5分)如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°、木瓜B的仰角为30°.求C处到树干DO的距离CO.(结果精确到1米)(参考数据:,
)
20.(8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.从中任意摸出1个球,恰好摸到红球的概率是 ;先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.
21.(10分)解分式方程: -1=
22.(10分)如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B.
23.(12分)近几年“雾霾”成为全社会关注的话题某校环保志愿者小组对该市2018年空气质量进行调查,从全年365天中随机抽查了50天的空气质量指数(AQI),得到以下数据:43、62、80、78、46、78、23、59、32、78、86、125、98、116、86、69、28、43、58、87、75、116、178、146、57、26、43、59、77、103、126、159、201、289、315、253、196、102、93、72、56、43、39、44、47、34、31、29、43、1.
(1)请你完成如下的统计表;
AQI | 0~50 | 51~100 | 101~150 | 151~200 | 201~250 | 300以上 |
质量等级 | A(优) | B(良) | C(轻度污染) | D(中度污染) | E(重度污染) | F(严重污染) |
天数 |
|
|
|
|
|
|
(2)请你根据题中所给信息绘制该市2018年空气质量等级条形统计图;
(3)请你估计该市全年空气质量等级为“重度污染”和“严重污染”的天数.
24.(14分)计算:.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
如图,∵∠BOC=50°,
∴∠BAC=25°,
∵AC∥OB,
∴∠OBA=∠BAC=25°,
∵OA=OB,
∴∠OAB=∠OBA=25°.
故选A.
2、B
【解析】
将一次函数解析式代入到反比例函数解析式中,整理得出x2﹣2x+1﹣6t=0,又因两函数图象有两个交点,且两交点横坐标的积为负数,根据根的判别式以及根与系数的关系可求解.
【详解】
由题意可得:﹣x+2=,
所以x2﹣2x+1﹣6t=0,
∵两函数图象有两个交点,且两交点横坐标的积为负数,
∴
解不等式组,得t>.
故选:B.
点睛:此题主要考查了反比例函数与一次函数的交点问题,关键是利用两个函数的解析式构成方程,再利用一元二次方程的根与系数的关系求解.
3、B
【解析】
△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.
【详解】
解:当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,
当P点由B运动到C点时,即2<x<4时,y=×2×2=2,
符合题意的函数关系的图象是B;
故选B.
【点睛】
本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围.
4、C
【解析】
分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值,由2017÷5=403…2,可知点P(2018,m)在此“波浪线”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可.
详解:当y=0时,﹣x(x﹣5)=0,解得x1=0,x2=5,则A1(5,0),
∴OA1=5,
∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…;如此进行下去,得到一“波浪线”,
∴A1A2=A2A3=…=OA1=5,
∴抛物线C404的解析式为y=(x﹣5×403)(x﹣5×404),即y=(x﹣2015)(x﹣2020),
当x=2018时,y=(2018﹣2015)(2018﹣2020)=﹣1,
即m=﹣1.
故选C.
点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.
5、C
【解析】
根据折叠易得BD,AB长,利用相似可得BF长,也就求得了CF的长度,△CEF的面积=CF•CE.
【详解】
解:由折叠的性质知,第二个图中BD=AB-AD=4,第三个图中AB=AD-BD=2,
因为BC∥DE,
所以BF:DE=AB:AD,
所以BF=2,CF=BC-BF=4,
所以△CEF的面积=CF•CE=8;
故选:C.
点睛:
本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②矩形的性质,平行线的性质,三角形的面积公式等知识点.
6、C
【解析】
根据中心对称图形的定义依次判断各项即可解答.
【详解】
选项A、平行四边形是中心对称图形;
选项B、圆是中心对称图形;
选项C、等边三角形不是中心对称图形;
选项D、正六边形是中心对称图形;
故选C.
【点睛】
本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.
7、C
【解析】
直接利用整式的除法运算以及积的乘方运算法则、合并同类项法则分别化简得出答案.
【详解】
A选项:x2+2x2=3x2,故此选项错误;
B选项:(﹣2x2)3=﹣8x6,故此选项错误;
C选项:x2•(﹣x3)=﹣x5,故此选项正确;
D选项:2x2÷x2=2,故此选项错误.
故选C.
【点睛】
考查了整式的除法运算以及积的乘方运算、合并同类项,正确掌握运算法则是解题关键.
8、C
【解析】
根据数轴上点的位置判断出a﹣4与a﹣11的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果.
【详解】
解:根据数轴上点的位置得:5<a<10,
∴a﹣4>0,a﹣11<0,
则原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,
故选:C.
【点睛】
此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键.
9、A
【解析】
根据题意,可判断出该几何体为圆柱.且已知底面半径以及高,易求表面积.
解答:解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,
那么它的表面积=2π×2+π×1×1×2=6π,故选A.
10、C
【解析】
过点E作EF∥AB,如图,易得CD∥EF,然后根据平行线的性质可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,进一步即得结论.
【详解】
解:过点E作EF∥AB,如图,∵AB∥CD,AB∥EF,∴CD∥EF,
∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,
∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.
故选:C.
【点睛】
本题考查了平行公理的推论和平行线的性质,属于常考题型,作EF∥AB、熟练掌握平行线的性质是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、5x﹣3y=8 3x+8y=9
【解析】
方程组的解一定是方程5x﹣3y=8与3x+8y=9的公共解.
故答案为5x﹣3y=8;3x+8y=9.
12、SSS.
【解析】
由三边相等得△COM≌△CON,即由SSS判定三角全等.做题时要根据已知条件结合判定方法逐个验证.
【详解】
由图可知,CM=CN,又OM=ON,
∵在△MCO和△NCO中
,
∴△COM≌△CON(SSS),
∴∠AOC=∠BOC,
即OC是∠AOB的平分线.
故答案为:SSS.
【点睛】
本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.
13、1
【解析】
先求出直线y=x+2与坐标轴的交点坐标,再由三角形的中位线定理求出CD,得到C点坐标.
【详解】
解:令x=0,得y=x+2=0+2=2,
∴B(0,2),
∴OB=2,
令y=0,得0=x+2,解得,x=-6,
∴A(-6,0),
∴OA=OD=6,
∵OB∥CD,
∴CD=2OB=4,
∴C(6,4),
把c(6,4)代入y= (k≠0)中,得k=1,
故答案为:1.
【点睛】
本题考查了一次函数与反比例函数的综合,需要掌握求函数图象与坐标轴的交点坐标方法,三角形的中位线定理,待定系数法.本题的关键是求出C点坐标.
14、14
【解析】
根据菱形的性质,先求另一条对角线的长度,再运用菱形的面积等于对角线乘积的一半求解.
【详解】
解:如图,在菱形ABCD中,BD=2.
∵菱形的周长为10,BD=2,
∴AB=5,BO=3,
∴ AC=3.
∴面积
故答案为 14.
【点睛】
此题考查了菱形的性质及面积求法,难度不大.
15、x2+7x-4
【解析】
设他所捂的多项式为A,则接下来利用去括号法则对其进行去括号,然后合并同类项即可.
【详解】
解:设他所捂的多项式为A,则根据题目信息可得
他所捂的多项式为
故答案为
【点睛】
本题是一道关于整数加减运算的题目,解答本题的关键是熟练掌握整数的加减运算;
16、
【解析】
根据直角三角形的中点性质结合勾股定理解答即可.
【详解】
解:,点F是AD的中点,
.
故答案为: .
【点睛】
此题重点考查学生对勾股定理的理解。熟练掌握勾股定理是解题的关键.
17、-2
【解析】
=1×(-2)=-2
三、解答题(共7小题,满分69分)
18、(1),;(2)当35<x<1时,选择B方式能节省上网费,见解析.
【解析】
(1)根据两种方式的收费标准,进行分类讨论即可求解;
(2)当35<x<1时,计算出y1-y2的值,即可得出答案.
【详解】
解:(1)由题意得:;
即;
;
即;
(2)选择B方式能节省上网费
当35<x<1时,有y1=3x-45,y2=1.
:y1-y2=3x-45-1=3x-2.记y=3x-2
因为3>4,有y随x的增大而增大
当x=35时,y=3.
所以当35<x<1时,有y>3,即y>4.
所以当35<x<1时,选择B方式能节省上网费
【点睛】
此题考查了一次函数的应用,注意根据图表得出解题需要的信息,难度一般,正确理解收费标准求出函数解析式是解题的关键.
19、解:设OC=x,
在Rt△AOC中,∵∠ACO=45°,∴OA=OC=x.
在Rt△BOC中,∵∠BCO=30°,∴.
∵AB=OA﹣OB=,解得.
∴OC=5米.
答:C处到树干DO的距离CO为5米.
【解析】
解直角三角形的应用(仰角俯角问题),锐角三角函数定义,特殊角的三角函数值.
【分析】设OC=x,在Rt△AOC中,由于∠ACO=45°,故OA=x,在Rt△BOC中,由于∠BCO=30°,故,再根据AB=OA-OB=2即可得出结论.
20、(1)(2)
【解析】
试题分析:(1)因为总共有4个球,红球有2个,因此可直接求得红球的概率;
(2)根据题意,列表表示小球摸出的情况,然后找到共12种可能,而两次都是红球的情况有2种,因此可求概率.
试题解析:解:(1).
(2)用表格列出所有可能的结果:
第二次 | 红球1 | 红球2 | 白球 | 黑球 |
红球1 |
| (红球1,红球2) | (红球1,白球) | (红球1,黑球) |
红球2 | (红球2,红球1) |
| (红球2,白球) | (红球2,黑球) |
白球 | (白球,红球1) | (白球,红球2) |
| (白球,黑球) |
黑球 | (黑球,红球1) | (黑球,红球2) | (黑球,白球) |
|
由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.
∴P(两次都摸到红球)==.
考点:概率统计
21、7
【解析】
根据分式的性质及等式的性质进行去分母,去括号,移项,合并同类项,未知数系数化为1即可.
【详解】
-1=
3-(x-3)=-1
3-x+3=-1
x=7
【点睛】
此题主要考查分式方程的求解,解题的关键是正确去掉分母.
22、证明见解析.
【解析】
根据在同圆中等弦对的弧相等,AB、CD是⊙O的直径,则,由FD=EB,得,,由等量减去等量仍是等量得:,即,由等弧对的圆周角相等,得∠D=∠B.
【详解】
解:方法(一)
证明:∵AB、CD是⊙O的直径,
∴.
∵FD=EB,
∴.
∴.
即.
∴∠D=∠B.
方法(二)
证明:如图,连接CF,AE.
∵AB、CD是⊙O的直径,
∴∠F=∠E=90°(直径所对的圆周角是直角).
∵AB=CD,DF=BE,
∴Rt△DFC≌Rt△BEA(HL).
∴∠D=∠B.
【点睛】
本题利用了在同圆中等弦对的弧相等,等弧对的弦,圆周角相等,等量减去等量仍是等量求解.
23、(1)补全统计表见解析;(2)该市2018年空气质量等级条形统计图见解析;(3)29天.
【解析】
(1)由已知数据即可得;
(2)根据统计表作图即可得;
(3)全年365天乘以样本中“重度污染”和“严重污染”的天数和所占比例.
【详解】
(1)补全统计表如下:
AQI | 0~50 | 51~100 | 101~150 | 151~200 | 201~250 | 300以上 |
质量等级 | A(优) | B(良) | C(轻度污染) | D(中度污染) | E(重度污染) | F(严重污染) |
天数 | 16 | 20 | 7 | 3 | 3 | 1 |
(2)该市2018年空气质量等级条形统计图如下:
(3)估计该市全年空气质量等级为“重度污染”和“严重污染”的天数为365×≈29天.
【点睛】
本题考查了条形统计图的应用与用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.
24、
【解析】
【分析】括号内先进行通分,进行分式的加减法运算,然后再与括号外的分式进行分式乘除法运算即可.
【详解】原式=
=
=.
【点睛】本题考查了分式的混合运算,熟练掌握有关分式的运算法则是解题的关键.
2023-2024学年浙江省奉化市溪口中学数学九年级第一学期期末检测试题含答案: 这是一份2023-2024学年浙江省奉化市溪口中学数学九年级第一学期期末检测试题含答案,共8页。
浙江省奉化市溪口中学2023-2024学年数学八上期末考试模拟试题含答案: 这是一份浙江省奉化市溪口中学2023-2024学年数学八上期末考试模拟试题含答案,共7页。试卷主要包含了下列各数中,是无理数的是,如果在y轴上,那么点P的坐标是,下列说法,下列说法正确的是,如图,是的角平分线,,交于点,已知正比例函数y=kx,分式的值为0,则等内容,欢迎下载使用。
浙江省奉化市溪口中学2022-2023学年七年级数学第二学期期末学业质量监测模拟试题含答案: 这是一份浙江省奉化市溪口中学2022-2023学年七年级数学第二学期期末学业质量监测模拟试题含答案,共7页。试卷主要包含了下列命题中,真命题是,若分式有意义,则a的取值范围为,下列说法中正确的是,下列图象能表示一次函数的是等内容,欢迎下载使用。