2022届期浙江省金华市市级名校中考数学考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.根据中国铁路总公司3月13日披露,2018年铁路春运自2月1日起至3月12日止,为期40天全国铁路累计发送旅客3.82亿人次.3.82亿用科学记数法可以表示为( )
A.3.82×107 B.3.82×108 C.3.82×109 D.0.382×1010
2.下列各式中,正确的是( )
A.﹣(x﹣y)=﹣x﹣y B.﹣(﹣2)﹣1= C.﹣ D.
3.要使式子有意义,的取值范围是( )
A. B.且 C.. 或 D. 且
4.如图,已知△ABC的三个顶点均在格点上,则cosA的值为( )
A. B. C. D.
5.如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a﹣b+c,则P的取值范围是( )
A.﹣4<P<0 B.﹣4<P<﹣2 C.﹣2<P<0 D.﹣1<P<0
6.﹣的绝对值是( )
A.﹣ B.﹣ C. D.
7.下列计算,正确的是( )
A.a2•a2=2a2 B.a2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+1
8.如图,将一正方形纸片沿图(1)、(2)的虚线对折,得到图(3),然后沿图(3)中虚线的剪去一个角,展开得平面图形(4),则图(3)的虚线是( )
A. B. C. D.
9.某公园里鲜花的摆放如图所示,第①个图形中有3盆鲜花,第②个图形中有6盆鲜花,第③个图形中有11盆鲜花,……,按此规律,则第⑦个图形中的鲜花盆数为()
A.37 B.38 C.50 D.51
10.在一张考卷上,小华写下如下结论,记正确的个数是m,错误的个数是n,你认为
有公共顶点且相等的两个角是对顶角
若,则它们互余
A.4 B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.
12.如图所示,点C在反比例函数的图象上,过点C的直线与x轴、y轴分别交于点A、B,且,已知的面积为1,则k的值为______.
13.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2016的值为_____.
14.分式方程-1=的解是x=________.
15.已知正方形ABCD的边长为8,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,当点B,D,G在一条直线上时,若DG=2,则CE的长为_____.
16.方程x+1=的解是_____.
17.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是 .
三、解答题(共7小题,满分69分)
18.(10分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过点D作DE⊥AC,垂足为E.
(1)证明:DE为⊙O的切线;
(2)连接DC,若BC=4,求弧DC与弦DC所围成的图形的面积.
19.(5分)在平面直角坐标系中,抛物线经过点A(-1,0)和点B(4,5).
(1)求该抛物线的函数表达式.
(2)求直线AB关于x轴对称的直线的函数表达式.
(3)点P是x轴上的动点,过点P作垂直于x轴的直线l,直线l与该抛物线交于点M,与直线AB交于点N.当PM < PN时,求点P的横坐标的取值范围.
20.(8分)计算:﹣14﹣2×(﹣3)2+÷(﹣)如图,小林将矩形纸片ABCD沿折痕EF翻折,使点C、D分别落在点M、N的位置,发现∠EFM=2∠BFM,求∠EFC的度数.
21.(10分)计算:sin30°•tan60°+..
22.(10分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?
23.(12分)先化简:,然后从的范围内选取一个合适的整数作为x的值代入求值.
24.(14分)为看丰富学生课余文化生活,某中学组织学生进行才艺比赛,每人只能从以下五个项目中选报一项:.书法比赛,.绘画比赛,.乐器比赛,.象棋比赛,.围棋比赛根据学生报名的统计结果,绘制了如下尚不完整的统计图:
图1 各项报名人数扇形统计图:
图2 各项报名人数条形统计图:
根据以上信息解答下列问题:
(1)学生报名总人数为 人;
(2)如图1项目D所在扇形的圆心角等于 ;
(3)请将图2的条形统计图补充完整;
(4)学校准备从书法比赛一等奖获得者甲、乙、丙、丁四名同学中任意选取两名同学去参加全市的书法比赛,求恰好选中甲、乙两名同学的概率.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
根据题目中的数据可以用科学记数法表示出来,本题得以解决.
【详解】
解:3.82亿=3.82×108,
故选B.
【点睛】
本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法.
2、B
【解析】
A.括号前是负号去括号都变号;
B负次方就是该数次方后的倒数,再根据前面两个负号为正;
C. 两个负号为正;
D.三次根号和二次根号的算法.
【详解】
A选项,﹣(x﹣y)=﹣x+y,故A错误;
B选项, ﹣(﹣2)﹣1=,故B正确;
C选项,﹣,故C错误;
D选项,22,故D错误.
【点睛】
本题考查去括号法则的应用,分式的性质,二次根式的算法,熟记知识点是解题的关键.
3、D
【解析】
根据二次根式和分式有意义的条件计算即可.
【详解】
解:∵ 有意义,
∴a+2≥0且a≠0,
解得a≥-2且a≠0.
故本题答案为:D.
【点睛】
二次根式和分式有意义的条件是本题的考点,二次根式有意义的条件是被开方数大于等于0,分式有意义的条件是分母不为0.
4、D
【解析】
过B点作BD⊥AC,如图,
由勾股定理得,AB=,AD=,
cosA===,
故选D.
5、A
【解析】
解:∵二次函数的图象开口向上,∴a>1.
∵对称轴在y轴的左边,∴<1.∴b>1.
∵图象与y轴的交点坐标是(1,﹣2),过(1,1)点,代入得:a+b﹣2=1.
∴a=2﹣b,b=2﹣a.∴y=ax2+(2﹣a)x﹣2.
把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣3,
∵b>1,∴b=2﹣a>1.∴a<2.
∵a>1,∴1<a<2.∴1<2a<3.∴﹣3<2a﹣3<1,即﹣3<P<1.
故选A.
【点睛】
本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键.
6、C
【解析】
根据负数的绝对值是它的相反数,可得答案.
【详解】
│-│=,A错误;
│-│=,B错误;││=,D错误;
││=,故选C.
【点睛】
本题考查了绝对值,解题的关键是掌握绝对值的概念进行解题.
7、C
【解析】
解:A.故错误;
B. 故错误;
C.正确;
D.
故选C.
【点睛】
本题考查合并同类项,同底数幂相乘;幂的乘方,以及完全平方公式的计算,掌握运算法则正确计算是解题关键.
8、D
【解析】
本题关键是正确分析出所剪时的虚线与正方形纸片的边平行.
【详解】
要想得到平面图形(4),需要注意(4)中内部的矩形与原来的正方形纸片的边平行,故剪时,虚线也与正方形纸片的边平行,所以D是正确答案,故本题正确答案为D选项.
【点睛】
本题考查了平面图形在实际生活中的应用,有良好的空间想象能力过动手能力是解题关键.
9、D
【解析】
试题解析:
第①个图形中有 盆鲜花,
第②个图形中有盆鲜花,
第③个图形中有盆鲜花,
…
第n个图形中的鲜花盆数为
则第⑥个图形中的鲜花盆数为
故选C.
10、D
【解析】
首先判断出四个结论的错误个数和正确个数,进而可得m、n的值,再计算出即可.
【详解】
解:有公共顶点且相等的两个角是对顶角,错误;
,正确;
,错误;
若,则它们互余,错误;
则,,
,
故选D.
【点睛】
此题主要考查了二次根式的乘除、对顶角、科学记数法、余角和负整数指数幂,关键是正确确定m、n的值.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
根据题意得x1+x2=2,x1x2=﹣1,
所以x1+x2﹣x1x2=2﹣(﹣1)=1.
故答案为1.
12、1
【解析】
根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据的面积为1,即可求得k的值.
【详解】
解:设点A的坐标为,
过点C的直线与x轴,y轴分别交于点A,B,且,的面积为1,
点,
点B的坐标为,
,
解得,,
故答案为:1.
【点睛】
本题考查了反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
13、2.
【解析】
把x=m代入方程,求出2m2﹣3m=2,再变形后代入,即可求出答案.
【详解】
解:∵m是方程2x2﹣3x﹣2=0的一个根,
∴代入得:2m2﹣3m﹣2=0,
∴2m2﹣3m=2,
∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,
故答案为:2.
【点睛】
本题考查了求代数式的值和一元二次方程的解,解此题的关键是能求出2m2﹣3m=2.
14、-5
【解析】
两边同时乘以(x+3)(x-3),得
6-x2+9=-x2-3x,
解得:x=-5,
检验:当x=-5时,(x+3)(x-3)≠0,所以x=-5是分式方程的解,
故答案为:-5.
【点睛】本题考查了解分式方程,解题的关键是方程两边同时乘以最简公分母,切记要进行检验.
15、2或2.
【解析】
本题有两种情况,一种是点在线段的延长线上,一种是点在线段上,解题过程一样,利用正方形和三角形的有关性质,求出、的值,再由勾股定理求出的值,根据证明,可得,即可得到的长.
【详解】
解:
当点在线段的延长线上时,如图3所示.
过点作于,
是正方形的对角线,
,
,
在中,由勾股定理,得:
,
在和中,,
,
,
当点在线段上时,如图4所示.
过作于.
是正方形的对角线,
,
在中,由勾股定理,得:
在和中,,
,
,
故答案为或.
【点睛】
本题主要考查了勾股定理和三角形全等的证明.
16、x=1
【解析】
无理方程两边平方转化为整式方程,求出整式方程的解得到x的值,经检验即可得到无理方程的解.
【详解】
两边平方得:(x+1)1=1x+5,即x1=4,
开方得:x=1或x=-1,
经检验x=-1是增根,无理方程的解为x=1.
故答案为x=1
17、50°.
【解析】
根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:
【详解】
∵MN是AB的垂直平分线,∴AD="BD." ∴∠A=∠ABD.
∵∠DBC=15°,∴∠ABC=∠A+15°.
∵AB=AC,∴∠C=∠ABC=∠A+15°.
∴∠A+∠A+15°+∠A+15°=180°,
解得∠A=50°.
故答案为50°.
三、解答题(共7小题,满分69分)
18、(1)详见解析;(2).
【解析】
(1)连接OD,由平行线的判定定理可得OD∥AC,利用平行线的性质得∠ODE=∠DEA=90°,可得DE为⊙O的切线;
(2)连接CD,求弧DC与弦DC所围成的图形的面积利用扇形DOC面积-三角形DOC的面积计算即可.
【详解】
解:
(1)证明:连接OD,
∵OD=OB,
∴∠ODB=∠B,
∵AC=BC,
∴∠A=∠B,
∴∠ODB=∠A,
∴OD∥AC,
∴∠ODE=∠DEA=90°,
∴DE为⊙O的切线;
(2)连接CD,
∵∠A=30°,AC=BC,
∴∠BCA=120°,
∵BC为直径,
∴∠ADC=90°,
∴CD⊥AB,
∴∠BCD=60°,
∵OD=OC,
∴∠DOC=60°,
∴△DOC是等边三角形,
∵BC=4,
∴OC=DC=2,
∴S△DOC=DC×=,
∴弧DC与弦DC所围成的图形的面积=﹣=﹣.
【点睛】
本题考查的知识点是等腰三角形的性质、切线的判定与性质以及扇形面积的计算,解题的关键是熟练的掌握等腰三角形的性质、切线的判定与性质以及扇形面积的计算.
19、(1)(2)(3)
【解析】
(1)根据待定系数法,可得二次函数的解析式;
(2)根据待定系数法,可得AB的解析式,根据关于x轴对称的横坐标相等,纵坐标互为相反数,可得答案;
(3)根据PM<PN,可得不等式,利用绝对值的性质化简解不等式,可得答案.
【详解】
(1)将A(﹣1,1),B(2,5)代入函数解析式,得:
,解得:,抛物线的解析式为y=x2﹣2x﹣3;
(2)设AB的解析式为y=kx+b,将A(﹣1,1),B(2,5)代入函数解析式,得:
,解得:,直线AB的解析式为y=x+1,直线AB关于x轴的对称直线的表达式y=﹣(x+1),化简,得:y=﹣x﹣1;
(3)设M(n,n2﹣2n﹣3),N(n,n+1),PM<PN,即|n2﹣2n﹣3|<|n+1|.
∴|(n+1)(n-3)|-|n+1|<1,∴|n+1|(|n-3|-1)<1.
∵|n+1|≥1,∴|n-3|-1<1,∴|n-3|<1,∴-1<n-3<1,解得:2<n<2.
故当PM<PN时,求点P的横坐标xP的取值范围是2<xP<2.
【点睛】
本题考查了二次函数综合题.解(1)的关键是待定系数法,解(2)的关键是利用关于x轴对称的横坐标相等,纵坐标互为相反数;解(3)的关键是利用绝对值的性质化简解不等式.
20、(1)﹣10;(2)∠EFC=72°.
【解析】
(1)原式利用乘方的意义,立方根定义,乘除法则及家减法法则计算即可;(2)根据折叠的性质得到一对角相等,再由已知角的关系求出结果即可.
【详解】
(1)原式=﹣1﹣18+9=﹣10;
(2)由折叠得:∠EFM=∠EFC,
∵∠EFM=2∠BFM,
∴设∠EFM=∠EFC=x,则有∠BFM=x,
∵∠MFB+∠MFE+∠EFC=180°,
∴x+x+x=180°,
解得:x=72°,
则∠EFC=72°.
【点睛】
本题考查了实数的性质及平行线的性质,解题的关键是熟练掌握实数的运算法则及平行线的性质.
21、
【解析】
试题分析:把相关的特殊三角形函数值代入进行计算即可.
试题解析:原式=.
22、(1)若某天该商品每件降价3元,当天可获利1692元;
(2)2x;50﹣x.
(3)每件商品降价1元时,商场日盈利可达到2000元.
【解析】
(1)根据“盈利=单件利润×销售数量”即可得出结论;
(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;
(3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值.
【详解】
(1)当天盈利:(50-3)×(30+2×3)=1692(元).
答:若某天该商品每件降价3元,当天可获利1692元.
(2)∵每件商品每降价1元,商场平均每天可多售出2件,
∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.
故答案为2x;50-x.
(3)根据题意,得:(50-x)×(30+2x)=2000,
整理,得:x2-35x+10=0,
解得:x1=10,x2=1,
∵商城要尽快减少库存,
∴x=1.
答:每件商品降价1元时,商场日盈利可达到2000元.
【点睛】
考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).
23、,当x=1时,原式=﹣1.
【解析】
先化简分式,然后将x的值代入计算即可.
【详解】
解:原式=
= .
且,
∴x的整数有,
∴取,
当时,
原式.
【点睛】
本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.
24、(1)200;(2)54°;(3)见解析;(4)
【解析】
(1)根据A的人数及所占的百分比即可求出总人数;
(2)用D的人数除以总人数再乘360°即可得出答案;
(3)用总人数减去A,B,D,E的人数即为C对应的人数,然后即可把条形统计图补充完整;
(4)用树状图列出所有的情况,找出恰好选中甲、乙两名同学的情况数,利用概率公式求解即可.
【详解】
解:(1)学生报名总人数为(人),
故答案为:200;
(2)项目所在扇形的圆心角等于,
故答案为:54°;
(3)项目的人数为,
补全图形如下:
(4)画树状图得:
所有出现的等可能性结果共有12种,其中满足条件的结果有2种.
恰好选中甲、乙两名同学的概率为.
【点睛】
本题主要考查扇形统计图与条形统计图的结合,能够从图表中获取有用信息,掌握概率公式是解题的关键.
2022年浙江省绍兴市新昌县市级名校中考数学考试模拟冲刺卷含解析: 这是一份2022年浙江省绍兴市新昌县市级名校中考数学考试模拟冲刺卷含解析,共18页。
2022届山东省高密市市级名校中考数学考试模拟冲刺卷含解析: 这是一份2022届山东省高密市市级名校中考数学考试模拟冲刺卷含解析,共23页。试卷主要包含了一元二次方程的根的情况是,-3的相反数是等内容,欢迎下载使用。
2022届江苏省如皋实验市级名校中考数学考试模拟冲刺卷含解析: 这是一份2022届江苏省如皋实验市级名校中考数学考试模拟冲刺卷含解析,共23页。试卷主要包含了如图,l1∥l2,AF,﹣的绝对值是等内容,欢迎下载使用。