|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届江苏省江阴市澄东片重点达标名校中考四模数学试题含解析
    立即下载
    加入资料篮
    2022届江苏省江阴市澄东片重点达标名校中考四模数学试题含解析01
    2022届江苏省江阴市澄东片重点达标名校中考四模数学试题含解析02
    2022届江苏省江阴市澄东片重点达标名校中考四模数学试题含解析03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届江苏省江阴市澄东片重点达标名校中考四模数学试题含解析

    展开
    这是一份2022届江苏省江阴市澄东片重点达标名校中考四模数学试题含解析,共26页。试卷主要包含了考生要认真填写考场号和座位序号,计算6m6÷,对于函数y=,下列说法正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,PB切⊙O于点B,PO交⊙O于点E,延长PO交⊙O于点A,连结AB,⊙O的半径OD⊥AB于点C,BP=6,∠P=30°,则CD的长度是(  )

    A. B. C. D.2
    2.关于反比例函数y=,下列说法中错误的是(  )
    A.它的图象是双曲线
    B.它的图象在第一、三象限
    C.y的值随x的值增大而减小
    D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上
    3.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是(  )

    A.第24天的销售量为200件 B.第10天销售一件产品的利润是15元
    C.第12天与第30天这两天的日销售利润相等 D.第27天的日销售利润是875元
    4.如图,Rt△ABC中,∠C=90°,AC=4,BC=4,两等圆⊙A,⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为(  )

    A.2π B.4π C.6π D.8π
    5.如图,已知,那么下列结论正确的是( )

    A. B. C. D.
    6.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( )

    A. B. C. D.π
    7.如图,淇淇一家驾车从A地出发,沿着北偏东60°的方向行驶,到达B地后沿着南偏东50°的方向行驶来到C地,C地恰好位于A地正东方向上,则(  )
    ①B地在C地的北偏西50°方向上;
    ②A地在B地的北偏西30°方向上;
    ③cos∠BAC=;
    ④∠ACB=50°.其中错误的是(  )

    A.①② B.②④ C.①③ D.③④
    8.一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()

    A. B. C. D.
    9.计算6m6÷(-2m2)3的结果为(  )
    A. B. C. D.
    10.对于函数y=,下列说法正确的是(  )
    A.y是x的反比例函数 B.它的图象过原点
    C.它的图象不经过第三象限 D.y随x的增大而减小
    11.如图,在矩形ABCD中,AB=2,BC=1.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为(  )

    A. B. C. D.
    12.若一次函数y=(2m﹣3)x﹣1+m的图象不经过第三象限,则m的取值范图是(  )
    A.1<m< B.1≤m< C.1<m≤ D.1≤m≤
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是 .

    14.如图,在每个小正方形的边长为1的网格中,点A,B,C,D均在格点上,AB与CD相交于点E.
    (1)AB的长等于_____;
    (2)点F是线段DE的中点,在线段BF上有一点P,满足,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_____.

    15.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处,若△CDB′恰为等腰三角形,则DB′的长为 .

    16.因式分解:3a3﹣3a=_____.
    17.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.

    18.阅读下面材料:
    数学活动课上,老师出了一道作图问题:“如图,已知直线l和直线l外一点P.用直尺和圆规作直线PQ,使PQ⊥l于点Q.”

    小艾的作法如下:
    (1)在直线l上任取点A,以A为圆心,AP长为半径画弧.
    (2)在直线l上任取点B,以B为圆心,BP长为半径画弧.
    (3)两弧分别交于点P和点M
    (4)连接PM,与直线l交于点Q,直线PQ即为所求.
    老师表扬了小艾的作法是对的.
    请回答:小艾这样作图的依据是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).
    (1)分别求这两个函数的表达式;
    (2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.

    20.(6分)一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是多少千米/时?
    21.(6分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.求证:四边形ABCD是菱形;过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.

    22.(8分)如图,一次函数y=kx+b的图象与二次函数y=﹣x2+c的图象相交于A(﹣1,2),B(2,n)两点.
    (1)求一次函数和二次函数的解析式;
    (2)根据图象直接写出使二次函数的值大于一次函数的值的x的取值范围;
    (3)设二次函数y=﹣x2+c的图象与y轴相交于点C,连接AC,BC,求△ABC的面积.

    23.(8分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点.
    求反比例函数的表达式及点B的坐标;在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.
    24.(10分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
    25.(10分)工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?

    26.(12分)服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.
    (1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?
    (2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0 27.(12分)如图1,抛物线y=ax2+bx﹣2与x轴交于点A(﹣1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).
    (1)求该抛物线的解析式;
    (2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;
    (3)如图3,连结AC,将△AOC绕点O逆时针方向旋转,记旋转中的三角形为△A′OC′,在旋转过程中,直线OC′与直线BE交于点Q,若△BOQ为等腰三角形,请直接写出点Q的坐标.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    连接OB,根据切线的性质与三角函数得到∠POB=60°,OB=OD=2,再根据等腰三角形的性质与三角函数得到OC的长,即可得到CD的长.
    【详解】
    解:如图,连接OB,

    ∵PB切⊙O于点B,
    ∴∠OBP=90°,
    ∵BP=6,∠P=30°,
    ∴∠POB=60°,OD=OB=BPtan30°=6×=2,
    ∵OA=OB,
    ∴∠OAB=∠OBA=30°,
    ∵OD⊥AB,
    ∴∠OCB=90°,
    ∴∠OBC=30°,
    则OC=OB=,
    ∴CD=.
    故选:C.
    【点睛】
    本题主要考查切线的性质与锐角的三角函数,解此题的关键在于利用切线的性质得到相关线段与角度的值,再根据圆和等腰三角形的性质求解即可.
    2、C
    【解析】
    根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.
    【详解】
    A.反比例函数的图像是双曲线,正确;
    B.k=2>0,图象位于一、三象限,正确;
    C.在每一象限内,y的值随x的增大而减小,错误;
    D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.
    故选C.
    【点睛】
    本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.
    3、C
    【解析】
    试题解析:A、根据图①可得第24天的销售量为200件,故正确;
    B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,
    把(0,25),(20,5)代入得:,
    解得:,
    ∴z=-x+25,
    当x=10时,y=-10+25=15,
    故正确;
    C、当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,
    把(0,100),(24,200)代入得:,
    解得:,
    ∴y=t+100,
    当t=12时,y=150,z=-12+25=13,
    ∴第12天的日销售利润为;150×13=1950(元),第30天的日销售利润为;150×5=750(元),
    750≠1950,故C错误;
    D、第30天的日销售利润为;150×5=750(元),故正确.
    故选C
    4、B
    【解析】
    先依据勾股定理求得AB的长,从而可求得两圆的半径为4,然后由∠A+∠B=90°可知阴影部分的面积等于一个圆的面积的.
    【详解】
    在△ABC中,依据勾股定理可知AB==8,
    ∵两等圆⊙A,⊙B外切,
    ∴两圆的半径均为4,
    ∵∠A+∠B=90°,
    ∴阴影部分的面积==4π.
    故选:B.
    【点睛】
    本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键.
    5、A
    【解析】
    已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.
    【详解】
    ∵AB∥CD∥EF,
    ∴.
    故选A.
    【点睛】
    本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.
    6、A
    【解析】
    试题解析:如图,
    ∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,
    ∴BC=ACtan60°=1×=,AB=2
    ∴S△ABC=AC•BC=.
    根据旋转的性质知△ABC≌△AB′C′,则S△ABC=S△AB′C′,AB=AB′.
    ∴S阴影=S扇形ABB′+S△AB′C′-S△ABC
    =
    =.
    故选A.
    考点:1.扇形面积的计算;2.旋转的性质.
    7、B
    【解析】
    先根据题意画出图形,再根据平行线的性质及方向角的描述方法解答即可.
    【详解】
    如图所示,
    由题意可知,∠1=60°,∠4=50°,
    ∴∠5=∠4=50°,即B在C处的北偏西50°,故①正确;
    ∵∠2=60°,
    ∴∠3+∠7=180°﹣60°=120°,即A在B处的北偏西120°,故②错误;
    ∵∠1=∠2=60°,
    ∴∠BAC=30°,
    ∴cos∠BAC=,故③正确;
    ∵∠6=90°﹣∠5=40°,即公路AC和BC的夹角是40°,故④错误.
    故选B.

    【点睛】
    本题考查的是方向角,平行线的性质,特殊角的三角函数值,解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.
    8、B
    【解析】
    根据题中给出的函数图像结合一次函数性质得出a<0,b>0,再由反比例函数图像性质得出c<0,从而可判断二次函数图像开口向下,对称轴:>0,即在y轴的右边,与y轴负半轴相交,从而可得答案.
    【详解】
    解:∵一次函数y=ax+b图像过一、二、四,
    ∴a<0,b>0,
    又∵反比例 函数y=图像经过二、四象限,
    ∴c<0,
    ∴二次函数对称轴:>0,
    ∴二次函数y=ax2+bx+c图像开口向下,对称轴在y轴的右边,与y轴负半轴相交,
    故答案为B.
    【点睛】
    本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键.
    9、D
    【解析】
    分析:根据幂的乘方计算法则求出除数,然后根据同底数幂的除法法则得出答案.
    详解:原式=, 故选D.
    点睛:本题主要考查的是幂的计算法则,属于基础题型.明白幂的计算法则是解决这个问题的关键.
    10、C
    【解析】
    直接利用反比例函数的性质结合图象分布得出答案.
    【详解】
    对于函数y=,y是x2的反比例函数,故选项A错误;
    它的图象不经过原点,故选项B错误;
    它的图象分布在第一、二象限,不经过第三象限,故选项C正确;
    第一象限,y随x的增大而减小,第二象限,y随x的增大而增大,
    故选C.
    【点睛】
    此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键.
    11、B
    【解析】
    根据S△ABE=S矩形ABCD=1=•AE•BF,先求出AE,再求出BF即可.
    【详解】
    如图,连接BE.

    ∵四边形ABCD是矩形,
    ∴AB=CD=2,BC=AD=1,∠D=90°,
    在Rt△ADE中,AE===,
    ∵S△ABE=S矩形ABCD=1=•AE•BF,
    ∴BF=.
    故选:B.
    【点睛】
    本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.
    12、B
    【解析】
    根据一次函数的性质,根据不等式组即可解决问题;
    【详解】
    ∵一次函数y=(2m-3)x-1+m的图象不经过第三象限,
    ∴,
    解得1≤m<.
    故选:B.
    【点睛】
    本题考查一次函数的图象与系数的关系等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、50°.
    【解析】
    根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:
    【详解】
    ∵MN是AB的垂直平分线,∴AD="BD." ∴∠A=∠ABD.
    ∵∠DBC=15°,∴∠ABC=∠A+15°.
    ∵AB=AC,∴∠C=∠ABC=∠A+15°.
    ∴∠A+∠A+15°+∠A+15°=180°,
    解得∠A=50°.
    故答案为50°.
    14、 见图形
    【解析】
    分析:(Ⅰ)利用勾股定理计算即可;
    (Ⅱ)连接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格点G、H,连接GH交DE于F,因为DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格点I、J,连接IJ交BD于K,因为BI∥DJ,所以BK:DK=BI:DJ=5:2,连接EK交BF于P,可证BP:PF=5:3;
    详解:(Ⅰ)AB的长==;
    (Ⅱ)由题意:连接AC、BD.易知:AC∥BD,
    可得:EC:ED=AC:BD=3:1.
    取格点G、H,连接GH交DE于F.
    ∵DG∥CH,∴FD:FC=DG:CH=5:8,可得DF=EF.
    取格点I、J,连接IJ交BD于K.
    ∵BI∥DJ,∴BK:DK=BI:DJ=5:2.
    连接EK交BF于P,可证BP:PF=5:3.

    故答案为(Ⅰ);
    (Ⅱ)由题意:连接AC、BD.
    易知:AC∥BD,可得:EC:ED=AC:BD=3:1,
    取格点G、H,连接GH交DE于F.
    因为DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.
    取格点I、J,连接IJ交BD于K.
    因为BI∥DJ,所以BK:DK=BI:DJ=5:2,
    连接EK交BF于P,可证BP:PF=5:3.
    点睛:本题考查了作图﹣应用与设计,平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.
    15、36或4.
    【解析】
    (3)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,
    当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=36,得BE=3.
    由翻折的性质,得B′E=BE=3,
    ∴EG=AG﹣AE=8﹣3=5,
    ∴B′G===33,
    ∴B′H=GH﹣B′G=36﹣33=4,
    ∴DB′===;
    (3)当DB′=CD时,则DB′=36(易知点F在BC上且不与点C、B重合);
    (3)当CB′=CD时,
    ∵EB=EB′,CB=CB′,
    ∴点E、C在BB′的垂直平分线上,
    ∴EC垂直平分BB′,
    由折叠可知点F与点C重合,不符合题意,舍去.
    综上所述,DB′的长为36或.故答案为36或.

    考点:3.翻折变换(折叠问题);3.分类讨论.
    16、3a(a+1)(a﹣1).
    【解析】
    首先提取公因式3a,进而利用平方差公式分解因式得出答案.
    【详解】
    解:原式=3a(a2﹣1)
    =3a(a+1)(a﹣1).
    故答案为3a(a+1)(a﹣1).
    【点睛】
    此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
    17、6.4
    【解析】
    根据平行投影,同一时刻物长与影长的比值固定即可解题.
    【详解】
    解:由题可知:,
    解得:树高=6.4米.
    【点睛】
    本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.
    18、到线段两端距离相等的点在线段的垂直平分线上或两点确定一条直线或sss或全等三角形对应角相等或等腰三角形的三线合一
    【解析】
    从作图方法以及作图结果入手考虑其作图依据..
    【详解】
    解:依题意,AP=AM,BP=BM,根据垂直平分线的定义可知PM⊥直线l.因此易知小艾的作图依据是到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.故答案为到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.
    【点睛】
    本题主要考查尺规作图,掌握尺规作图的常用方法是解题关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)反比例函数表达式为,正比例函数表达式为;
    (2),.
    【解析】
    试题分析:(1)将点A坐标(2,-2)分别代入y=kx、y=求得k、m的值即可;(2)由题意得平移后直线解析式,即可知点B坐标,联立方程组求解可得第四象限内的交点C得坐标,可将△ABC的面积转化为△OBC的面积.
    试题解析:()把代入反比例函数表达式,
    得,解得,
    ∴反比例函数表达式为,
    把代入正比例函数,
    得,解得,
    ∴正比例函数表达式为.
    ()直线由直线向上平移个单位所得,
    ∴直线的表达式为,
    由,解得或,
    ∵在第四象限,
    ∴,
    连接,
    ∵,




    20、1千米/时
    【解析】
    设水流的速度是x千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20﹣x)千米/时,根据由货轮往返两个码头之间,可知顺水航行的距离与逆水航行的距离相等列出方程,解方程即可求解.
    【详解】
    设水流的速度是x千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20﹣x)千米/时,
    根据题意得:6(20﹣x)=1(20+x),
    解得:x=1.
    答:水流的速度是1千米/时.
    【点睛】
    本题考查了一元一次方程的应用,读懂题意,找出等量关系,设出未知数后列出方程是解决此类题目的基本思路.
    21、(1)详见解析;(2)1.
    【解析】
    (1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;
    (2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE==6,于是得到结论.
    【详解】
    (1)证明:∵AD∥BC,
    ∴∠ADB=∠CBD,
    ∵BD平分∠ABC,
    ∴∠ABD=∠CBD,
    ∴∠ADB=∠ABD,
    ∴AD=AB,
    ∵BA=BC,
    ∴AD=BC,
    ∴四边形ABCD是平行四边形,
    ∵BA=BC,
    ∴四边形ABCD是菱形;
    (2)解:∵DE⊥BD,

    ∴∠BDE=90°,
    ∴∠DBC+∠E=∠BDC+∠CDE=90°,
    ∵CB=CD,
    ∴∠DBC=∠BDC,
    ∴∠CDE=∠E,
    ∴CD=CE=BC,
    ∴BE=2BC=10,
    ∵BD=8,
    ∴DE==6,
    ∵四边形ABCD是菱形,
    ∴AD=AB=BC=5,
    ∴四边形ABED的周长=AD+AB+BE+DE=1.
    【点睛】
    本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.
    22、(1)y=﹣x+1;(2)﹣1<x<2;(3)3;
    【解析】
    (1)根据待定系数法求一次函数和二次函数的解析式即可.
    (2)根据图象以及点A,B两点的坐标即可求出使二次函数的值大于一次函数的值的x的取值范围;
    (3)连接AC、BC,设直线AB交y轴于点D,根据即可求出△ABC的面积.
    【详解】
    (1)把A(﹣1,2)代入y=﹣x2+c得:﹣1+c=2,
    解得:c=3,
    ∴y=﹣x2+3,
    把B(2,n)代入y=﹣x2+3得:n=﹣1,
    ∴B(2,﹣1),
    把A(﹣1,2)、B(2,﹣1)分别代入y=kx+b得
    解得:
    ∴y=﹣x+1;
    (2)根据图象得:使二次函数的值大于一次函数的值的x的取值范围是﹣1<x<2;
    (3)连接AC、BC,设直线AB交y轴于点D,

    把x=0代入y=﹣x2+3得:y=3,
    ∴C(0,3),
    把x=0代入y=﹣x+1得:y=1,
    ∴D(0,1),
    ∴CD=3﹣1=2,

    【点睛】
    考查待定系数法求二次函数解析式,三角形的面积公式等,掌握待定系数法是解题的关键.
    23、(1),;(2)P,.
    【解析】
    试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;
    (2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB.由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论.
    试题解析:(1)把点A(1,a)代入一次函数y=-x+4,
    得:a=-1+4,解得:a=3,
    ∴点A的坐标为(1,3).
    把点A(1,3)代入反比例函数y=,
    得:3=k,
    ∴反比例函数的表达式y=,
    联立两个函数关系式成方程组得:,
    解得:,或,
    ∴点B的坐标为(3,1).
    (2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示.

    ∵点B、D关于x轴对称,点B的坐标为(3,1),
    ∴点D的坐标为(3,- 1).
    设直线AD的解析式为y=mx+n,
    把A,D两点代入得:,
    解得:,
    ∴直线AD的解析式为y=-2x+1.
    令y=-2x+1中y=0,则-2x+1=0,
    解得:x=,
    ∴点P的坐标为(,0).
    S△PAB=S△ABD-S△PBD=BD•(xB-xA)-BD•(xB-xP)
    =×[1-(-1)]×(3-1)-×[1-(-1)]×(3-)
    =.
    考点:1.反比例函数与一次函数的交点问题;2.待定系数法求一次函数解析式;3.轴对称-最短路线问题.
    24、 (1) ;(2).
    【解析】
    (1)直接利用概率公式求解;
    (2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.
    【详解】
    (1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;
    (2)画树状图为:

    共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.
    25、裁掉的正方形的边长为2dm,底面积为12dm2.
    【解析】
    试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.
    试题解析:
    设裁掉的正方形的边长为xdm,
    由题意可得(10-2x)(6-2x)=12,
    即x2-8x+12=0,解得x=2或x=6(舍去),
    答:裁掉的正方形的边长为2dm,底面积为12dm2.
    26、(1)甲种服装最多购进75件,(2)见解析.
    【解析】
    (1)设甲种服装购进x件,则乙种服装购进(100-x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式解答即可;
    (2)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.
    【详解】
    (1)设购进甲种服装x件,由题意可知:80x+60(100-x)≤7500,解得x≤75
    答:甲种服装最多购进75件,
    (2)设总利润为W元,
    W=(120-80-a)x+(90-60)(100-x)
    即w=(10-a)x+1.
    ①当0<a<10时,10-a>0,W随x增大而增大,
    ∴当x=75时,W有最大值,即此时购进甲种服装75件,乙种服装25件;
    ②当a=10时,所以按哪种方案进货都可以;
    ③当10<a<20时,10-a<0,W随x增大而减小.
    当x=65时,W有最大值,即此时购进甲种服装65件,乙种服装35件.
    【点睛】
    本题考查了一元一次方程的应用,不等式的应用,以及一次函数的性质,正确利用x表示出利润是关键.
    27、(1)y=x2﹣x﹣2;(2)9;(3)Q坐标为(﹣)或(4﹣)或(2,1)或(4+,﹣).
    【解析】
    试题分析:把点代入抛物线,求出的值即可.
    先用待定系数法求出直线BE的解析式,进而求得直线AD的解析式,设则表示出,用配方法求出它的最大值,
    联立方程求出点的坐标, 最大值=,
    进而计算四边形EAPD面积的最大值;
    分两种情况进行讨论即可.
    试题解析:(1)∵在抛物线上,

    解得
    ∴抛物线的解析式为
    (2)过点P作轴交AD于点G,


    ∴直线BE的解析式为
    ∵AD∥BE,设直线AD的解析式为 代入,可得
    ∴直线AD的解析式为
    设则

    ∴当x=1时,PG的值最大,最大值为2,
    由 解得 或

    ∴ 最大值=

    ∵AD∥BE,

    ∴S四边形APDE最大=S△ADP最大+
    (3)①如图3﹣1中,当时,作于T.





    可得
    ②如图3﹣2中,当时,
    当时,
    当时,Q3
    综上所述,满足条件点点Q坐标为或或或

    相关试卷

    江苏省江阴市华士片、澄东片重点达标名校2022年中考适应性考试数学试题含解析: 这是一份江苏省江阴市华士片、澄东片重点达标名校2022年中考适应性考试数学试题含解析,共21页。试卷主要包含了关于x的方程等内容,欢迎下载使用。

    江苏省江阴市要塞片重点达标名校2022年中考二模数学试题含解析: 这是一份江苏省江阴市要塞片重点达标名校2022年中考二模数学试题含解析,共18页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    2022年江苏省江阴市华士片、澄东片中考数学模试卷含解析: 这是一份2022年江苏省江阴市华士片、澄东片中考数学模试卷含解析,共19页。试卷主要包含了答题时请按要求用笔,如图,某校40名学生参加科普知识竞赛等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map