2022届湖北省武汉市华中学师范大第一附属中学中考数学最后一模试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )
A.甲的速度是4km/h B.乙的速度是10km/h
C.乙比甲晚出发1h D.甲比乙晚到B地3h
2.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )
A. B. C. D.
3.已知正方形ABCD的边长为4cm,动点P从A出发,沿AD边以1cm/s的速度运动,动点Q从B出发,沿BC,CD边以2cm/s的速度运动,点P,Q同时出发,运动到点D均停止运动,设运动时间为x(秒),△BPQ的面积为y(cm2),则y与x之间的函数图象大致是( )
A. B. C. D.
4.光年天文学中的距离单位,1光年大约是9500000000000km,用科学记数法表示为
A. B. C. D.
5.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )
A. B. C. D.
6.-4的绝对值是( )
A.4 B. C.-4 D.
7.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正确的是( )
A.a=b•cosA B.c=a•sinA C.a•cotA=b D.a•tanA=b
8.下列计算结果等于0的是( )
A. B. C. D.
9.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于( )之间.
A.B与C B.C与D C.E与F D.A与B
10.已知关于x的方程2x+a-9=0的解是x=2,则a的值为
A.2 B.3 C.4 D.5
二、填空题(共7小题,每小题3分,满分21分)
11.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球_____个.
12.八位女生的体重(单位:kg)分别为36、42、38、40、42、35、45、38,则这八位女生的体重的中位数为_____kg.
13.因式分解:x2y-4y3=________.
14.如图,点A在双曲线上,AB⊥x轴于B,且△AOB的面积S△AOB=2,则k=______.
15.因式分解:2m2﹣8n2= .
16.如果,那么代数式的值是______.
17.若x,y为实数,y=,则4y﹣3x的平方根是____.
三、解答题(共7小题,满分69分)
18.(10分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF试说明AC=EF;求证:四边形ADFE是平行四边形.
19.(5分)已知AB是⊙O的直径,弦CD与AB相交,∠BAC=40°.
(1)如图1,若D为弧AB的中点,求∠ABC和∠ABD的度数;
(2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的度数.
20.(8分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈,cos53°≈,tan53°≈)
21.(10分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.
求证:△AEF≌△DEB;证明四边形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD 的面积.
22.(10分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.
23.(12分)如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率.
24.(14分)如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离AD为100米,试求这栋楼的高度BC.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
甲的速度是:20÷4=5km/h;
乙的速度是:20÷1=20km/h;
由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,
故选C.
2、C
【解析】
分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.
详解:从左边看竖直叠放2个正方形.
故选:C.
点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.
3、B
【解析】
根据题意,Q点分别在BC、CD上运动时,形成不同的三角形,分别用x表示即可.
【详解】
(1)当0≤x≤2时,
BQ=2x
当2≤x≤4时,如下图
由上可知
故选:B.
【点睛】
本题是双动点问题,解答时要注意讨论动点在临界两侧时形成的不同图形,并要根据图形列出函数关系式.
4、C
【解析】
科学记数法的表示形式为的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将9500000000000km用科学记数法表示为.
故选C.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5、B
【解析】
由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.
故选B.
6、A
【解析】
根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)
【详解】
根据绝对值的概念可得-4的绝对值为4.
【点睛】
错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆.
7、C
【解析】
∵∠C=90°,
∴cosA=,sinA= ,tanA=,cotA=,
∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,
∴只有选项C正确,
故选C.
【点睛】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键.
8、A
【解析】
各项计算得到结果,即可作出判断.
【详解】
解:A、原式=0,符合题意;
B、原式=-1+(-1)=-2,不符合题意;
C、原式=-1,不符合题意;
D、原式=-1,不符合题意,
故选:A.
【点睛】
本题考查了有理数的运算,熟练掌握运算法则是解本题的关键.
9、A
【解析】
试题分析:在计算器上依次按键转化为算式为﹣=-1.414…;计算可得结果介于﹣2与﹣1之间.
故选A.
考点:1、计算器—数的开方;2、实数与数轴
10、D
【解析】
∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,
解得a=1.故选D.
二、填空题(共7小题,每小题3分,满分21分)
11、8
【解析】
试题分析:设红球有x个,根据概率公式可得,解得:x=8.
考点:概率.
12、1
【解析】
根据中位数的定义,结合图表信息解答即可.
【详解】
将这八位女生的体重重新排列为:35、36、38、38、40、42、42、45,
则这八位女生的体重的中位数为=1kg,
故答案为1.
【点睛】
本题考查了中位数,确定中位数的时候一定要先排好顺序,然后再根据个数是奇数或偶数来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数有时不一定是这组数据的数.
13、y(x++2y)(x-2y)
【解析】
首先提公因式,再利用平方差进行分解即可.
【详解】
原式.
故答案是:y(x+2y)(x-2y).
【点睛】
考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.
14、-4
【解析】
:由反比例函数解析式可知:系数,
∵S△AOB=2即,∴;
又由双曲线在二、四象限k<0,∴k=-4
15、2(m+2n)(m﹣2n).
【解析】
试题分析:根据因式分解法的步骤,有公因式的首先提取公因式,可知首先提取系数的最大公约数2,进一步发现提公因式后,可以用平方差公式继续分解.
解:2m2﹣8n2,
=2(m2﹣4n2),
=2(m+2n)(m﹣2n).
考点:提公因式法与公式法的综合运用.
16、1
【解析】
分析:对所求代数式根据分式的混合运算顺序进行化简,再把变形后整体代入即可.
详解:
故答案为1.
点睛:考查分式的混合运算,掌握运算顺序是解题的关键.注意整体代入法的运用.
17、±
【解析】
∵与同时成立,
∴ 故只有x2﹣4=0,即x=±2,
又∵x﹣2≠0,
∴x=﹣2,y==﹣,
4y﹣3x=﹣1﹣(﹣6)=5,
∴4y﹣3x的平方根是±.
故答案:±.
三、解答题(共7小题,满分69分)
18、证明见解析.
【解析】
(1)一方面Rt△ABC中,由∠BAC=30°可以得到AB=2BC,另一方面△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,从而可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF.
(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.
【详解】
证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC.
又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF.∴AF=BC.
∵在Rt△AFE和Rt△BCA中,AF=BC,AE=BA,
∴△AFE≌△BCA(HL).∴AC=EF.
(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD.
∴∠DAB=∠DAC+∠BAC=90°.∴EF∥AD.
∵AC=EF,AC=AD,∴EF=AD.
∴四边形ADFE是平行四边形.
考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定.
19、(1)45°;(2)26°.
【解析】
(1)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;
(2)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.
【详解】
(1)∵AB是⊙O的直径,∠BAC=38°, ∴∠ACB=90°,
∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,
∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,
∴∠ABD=45°;
(2)连接OD,
∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,
∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,
∵∠AOD是△ODP的一个外角,
∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,
∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,
∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.
【点睛】
本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
20、(20-5)千米.
【解析】
分析:作BD⊥AC,设AD=x,在Rt△ABD中求得BD=x,在Rt△BCD中求得CD=x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=可得答案.
详解:过点B作BD⊥ AC,
依题可得:∠BAD=60°,∠CBE=37°,AC=13(千米),
∵BD⊥AC,
∴∠ABD=30°,∠CBD=53°,
在Rt△ABD中,设AD=x,
∴tan∠ABD=
即tan30°=,
∴BD=x,
在Rt△DCB中,
∴tan∠CBD=
即tan53°=,
∴CD=
∵CD+AD=AC,
∴x+=13,解得,x=
∴BD=12-,
在Rt△BDC中,
∴cos∠CBD=tan60°=,
即:BC=(千米),
故B、C两地的距离为(20-5)千米.
点睛:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.
21、(1)证明详见解析;(2)证明详见解析;(3)1.
【解析】
(1)利用平行线的性质及中点的定义,可利用AAS证得结论;
(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;
(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.
【详解】
(1)证明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,
∴AE=DE,
在△AFE和△DBE中,
∴△AFE≌△DBE(AAS);
(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.
∵AD为BC边上的中线
∴DB=DC,
∴AF=CD.
∵AF∥BC,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,D是BC的中点,E是AD的中点,
∴AD=DC=BC,
∴四边形ADCF是菱形;
(3)连接DF,
∵AF∥BD,AF=BD,
∴四边形ABDF是平行四边形,
∴DF=AB=5,
∵四边形ADCF是菱形,
∴S菱形ADCF=AC▪DF=×4×5=1.
【点睛】
本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.
22、(1)这两年该市推行绿色建筑面积的年平均增长率为40%;(2)如果2017年仍保持相同的年平均增长率,2017年该市能完成计划目标.
【解析】
试题分析:(1)设这两年该市推行绿色建筑面积的年平均增长率x,根据2014年的绿色建筑面积约为700万平方米和2016年达到了1183万平方米,列出方程求解即可;
(2)根据(1)求出的增长率问题,先求出预测2017年绿色建筑面积,再与计划推行绿色建筑面积达到1500万平方米进行比较,即可得出答案.
试题解析:(1)设这两年该市推行绿色建筑面积的年平均增长率为x,
根据题意得:700(1+x)2=1183,
解得:x1=0.3=30%,x2=﹣2.3(舍去),
答:这两年该市推行绿色建筑面积的年平均增长率为30%;
(2)根据题意得:1183×(1+30%)=1537.9(万平方米),
∵1537.9>1500,
∴2017年该市能完成计划目标.
【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解.
23、.
【解析】
试题分析:先根据题意画出树状图或列表,由图表求得所有等可能的结果与A,C两个区域所涂颜色不相同的的情况,利用概率公式求出概率.
试题解析:解:画树状图如答图:
∵共有8种不同的涂色方法,其中A,C两个区域所涂颜色不相同的的情况有4种,
∴P(A,C两个区域所涂颜色不相同)=.
考点:1.画树状图或列表法;2.概率.
24、这栋楼的高度BC是米.
【解析】
试题分析:在直角三角形ADB中和直角三角形ACD中,根据锐角三角函数中的正切可以分别求得BD和CD的长,从而可以求得BC的长.
试题解析:
解:∵°,°,°,AD=100,
∴在Rt中,,
在Rt中,.
∴.
点睛:本题考查解直角三角形的应用-仰角俯角问题,解答此类问题的关键是明确已知边、已知角和未知边之间的三角函数关系.
湖北省华中学师范大第一附属中学2022年中考押题数学预测卷含解析: 这是一份湖北省华中学师范大第一附属中学2022年中考押题数学预测卷含解析,共25页。试卷主要包含了不等式组的解集在数轴上表示为,中国古代在利用“计里画方”,如图,直线与y轴交于点等内容,欢迎下载使用。
河南省郑州大第一附属中学2022年中考数学最后一模试卷含解析: 这是一份河南省郑州大第一附属中学2022年中考数学最后一模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,估计介于,下列四个实数中是无理数的是等内容,欢迎下载使用。
2022年陕西西安雁塔区师范大附属中学中考数学最后冲刺模拟试卷含解析: 这是一份2022年陕西西安雁塔区师范大附属中学中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,已知x=2﹣,则代数式,一组数据,如图等内容,欢迎下载使用。