|试卷下载
搜索
    上传资料 赚现金
    2022届江苏省南京市溧水县中考试题猜想数学试卷含解析
    立即下载
    加入资料篮
    2022届江苏省南京市溧水县中考试题猜想数学试卷含解析01
    2022届江苏省南京市溧水县中考试题猜想数学试卷含解析02
    2022届江苏省南京市溧水县中考试题猜想数学试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届江苏省南京市溧水县中考试题猜想数学试卷含解析

    展开
    这是一份2022届江苏省南京市溧水县中考试题猜想数学试卷含解析,共23页。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(共10小题,每小题3分,共30分)
    1.方程的解是( ).
    A. B. C. D.
    2.如图,数轴上的三点所表示的数分别为,其中,如果|那么该数轴的原点的位置应该在( )

    A.点的左边 B.点与点之间 C.点与点之间 D.点的右边
    3.如果(,均为非零向量),那么下列结论错误的是(  )
    A.// B.-2=0 C.= D.
    4.在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(3,0),在y轴的正半轴上取一点C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是(  )
    A.(0,) B.(,0) C.(0,2) D.(2,0)
    5.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是(  )

    A. B. C. D.
    6.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为

    A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1
    7.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是(  )
    A.三棱柱 B.四棱柱 C.三棱锥 D.四棱锥
    8.若A(﹣4,y1),B(﹣3,y2),C(1,y3)为二次函数y=x2﹣4x+m的图象上的三点,则y1,y2,y3的大小关系是( )
    A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y1<y3<y2
    9.小苏和小林在如图①所示的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如图②所示.下列叙述正确的是( ).

    A.两人从起跑线同时出发,同时到达终点
    B.小苏跑全程的平均速度大于小林跑全程的平均速度
    C.小苏前跑过的路程大于小林前跑过的路程
    D.小林在跑最后的过程中,与小苏相遇2次
    10.已知二次函数y=-x2-4x-5,左、右平移该抛物线,顶点恰好落在正比例函数y=-x的图象上,则平移后的抛物线解析式为( )
    A.y=-x2-4x-1 B.y=-x2-4x-2 C.y=-x2+2x-1 D.y=-x2+2x-2
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图1,AB是半圆O的直径,正方形OPNM的对角线ON与AB垂直且相等,Q是OP的中点.一只机器甲虫从点A出发匀速爬行,它先沿直径爬到点B,再沿半圆爬回到点A,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t,甲虫与微型记录仪之间的距离为y,表示y与t的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的( )

    A.点M B.点N C.点P D.点Q
    12.计算a10÷a5=_______.
    13.如图AB是直径,C、D、E为圆周上的点,则______.

    14.如果点A(-1,4)、B(m,4)在抛物线y=a(x-1)2+h上,那么m的值为_____.
    15.如图,▱ABCD中,AC⊥CD,以C为圆心,CA为半径作圆弧交BC于E,交CD的延长线于点F,以AC上一点O为圆心OA为半径的圆与BC相切于点M,交AD于点N.若AC=9cm,OA=3cm,则图中阴影部分的面积为_____cm1.

    16.不等式组的解集是_____;
    三、解答题(共8题,共72分)
    17.(8分)如图,已知一次函数的图象与反比例函数的图象交于点,且与轴交于点;点在反比例函数的图象上,以点为圆心,半径为的作圆与轴,轴分别相切于点、.

    (1)求反比例函数和一次函数的解析式;
    (2)请连结,并求出的面积;
    (3)直接写出当时,的解集.
    18.(8分)某公司对用户满意度进行问卷调查,将连续6天内每天收回的问卷数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第3天的频数是2.请你回答:
    (1)收回问卷最多的一天共收到问卷_________份;
    (2)本次活动共收回问卷共_________份;
    (3)市场部对收回的问卷统一进行了编号,通过电脑程序随机抽选一个编号,抽到问卷是第4天收回的概率是多少?
    (4)按照(3)中的模式随机抽选若干编号,确定幸运用户发放纪念奖,第4天和第6天分别有10份和2份获奖,那么你认为这两组中哪个组获奖率较高?为什么?

    19.(8分)如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.
    (1)求该抛物线的解析式;
    (2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
    (3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).
    20.(8分)某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:
    品名
    猕猴桃
    芒果
    批发价元千克
    20
    40
    零售价元千克
    26
    50
    他购进的猕猴桃和芒果各多少千克?
    如果猕猴桃和芒果全部卖完,他能赚多少钱?
    21.(8分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
    (1)求证:△AEF是等腰直角三角形;
    (2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;
    (3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.

    22.(10分)如图,AB为⊙O直径,C为⊙O上一点,点D是的中点,DE⊥AC于E,DF⊥AB于F.
    (1)判断DE与⊙O的位置关系,并证明你的结论;
    (2)若OF=4,求AC的长度.

    23.(12分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.
    被随机抽取的学生共有多少名?在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?
    24.如图,抛物线y=x2﹣2mx(m>0)与x轴的另一个交点为A,过P(1,﹣m)作PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C
    (1)若m=2,求点A和点C的坐标;
    (2)令m>1,连接CA,若△ACP为直角三角形,求m的值;
    (3)在坐标轴上是否存在点E,使得△PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    直接解分式方程,注意要验根.
    【详解】
    解:=0,
    方程两边同时乘以最简公分母x(x+1),得:3(x+1)-7x=0,
    解这个一元一次方程,得:x=,
    经检验,x=是原方程的解.
    故选B.
    【点睛】
    本题考查了解分式方程,解分式方程不要忘记验根.
    2、C
    【解析】
    根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.
    【详解】
    ∵|a|>|c|>|b|,
    ∴点A到原点的距离最大,点C其次,点B最小,
    又∵AB=BC,
    ∴原点O的位置是在点B、C之间且靠近点B的地方.
    故选:C.
    【点睛】
    此题考查了实数与数轴,理解绝对值的定义是解题的关键.
    3、B
    【解析】
    试题解析:向量最后的差应该还是向量. 故错误.
    故选B.
    4、A
    【解析】
    直接根据△AOC∽△COB得出OC2=OA•OB,即可求出OC的长,即可得出C点坐标.
    【详解】

    如图,连结AC,CB.    
    依△AOC∽△COB的结论可得:OC2=OA×OB,
    即OC2=1×3=3,
    解得:OC=或− (负数舍去),
    故C点的坐标为(0, ).
    故答案选:A.
    【点睛】
    本题考查了坐标与图形性质,解题的关键是熟练的掌握坐标与图形的性质.
    5、B
    【解析】
    主视图、俯视图是分别从物体正面、上面看,所得到的图形.
    【详解】
    综合主视图和俯视图,底层最少有个小立方体,第二层最少有个小立方体,因此搭成这个几何体的小正方体的个数最少是个.
    故选:B.
    【点睛】
    此题考查由三视图判断几何体,解题关键在于识别图形
    6、B
    【解析】
    试题分析:根据作图方法可得点P在第二象限角平分线上,
    则P点横纵坐标的和为0,即2a+b+1=0,
    ∴2a+b=﹣1.故选B.
    7、D
    【解析】
    试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.
    故选D
    考点:几何体的形状
    8、B
    【解析】
    根据函数解析式的特点,其对称轴为x=2,A(﹣4,y1),B(﹣3,y2),C(1,y3)在对称轴左侧,图象开口向上,利用y随x的增大而减小,可判断y3<y2<y1.
    【详解】
    抛物线y=x2﹣4x+m的对称轴为x=2,
    当x<2时,y随着x的增大而减小,
    因为-4<-3<1<2,
    所以y3<y2<y1,
    故选B.
    【点睛】
    本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的增减性是解题的关键.
    9、D
    【解析】
    A.由图可看出小林先到终点,A错误;
    B.全程路程一样,小林用时短,所以小林的平均速度大于小苏的平均速度,B错误;
    C.第15 秒时,小苏距离起点较远,两人都在返回起点的过程中,据此可判断小林跑的路程大于小苏跑的路程,C错误;
    D.由图知两条线的交点是两人相遇的点,所以是相遇了两次,正确.
    故选D.
    10、D
    【解析】
    把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数,而平移时,顶点的纵坐标不变,即可求得函数解析式.
    【详解】
    解:∵y=﹣x1﹣4x﹣5=﹣(x+1)1﹣1,∴顶点坐标是(﹣1,﹣1).
    由题知:把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数.
    ∵左、右平移时,顶点的纵坐标不变,∴平移后的顶点坐标为(1,﹣1),∴函数解析式是:y=﹣(x-1)1-1=﹣x1+1x﹣1,即:y=﹣x1+1x﹣1.
    故选D.
    【点睛】
    本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律,上下平移时,点的横坐标不变;左右平移时,点的纵坐标不变.同时考查了二次函数的性质,正比例函数y=﹣x的图象上点的坐标特征.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、D
    【解析】
    D.
    试题分析:应用排他法分析求解:
    若微型记录仪位于图1中的点M,AM最小,与图2不符,可排除A.
    若微型记录仪位于图1中的点N,由于AN=BM,即甲虫从A到B时是对称的,与图2不符,可排除B.
    若微型记录仪位于图1中的点P,由于甲虫从A到OP与圆弧的交点时甲虫与微型记录仪之间的距离y逐渐减小;甲虫从OP与圆弧的交点到A时甲虫与微型记录仪之间的距离y逐渐增大,即y与t的函数关系的图象只有两个趋势,与图2不符,可排除C.
    故选D.
    考点:1.动点问题的函数图象分析;2.排他法的应用.
    12、a1.
    【解析】
    试题分析:根据同底数幂的除法底数不变指数相减,可得答案.
    原式=a10-1=a1,
    故答案为a1.
    考点:同底数幂的除法.
    13、90°
    【解析】
    连接OE,根据圆周角定理即可求出答案.
    【详解】
    解:连接OE,

    根据圆周角定理可知:
    ∠C=∠AOE,∠D=∠BOE,
    则∠C+∠D=(∠AOE+∠BOE)=90°,
    故答案为:90°.
    【点睛】
    本题主要考查了圆周角定理,解题要掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    14、1
    【解析】
    根据函数值相等两点关于对称轴对称,可得答案.
    【详解】
    由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得:(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得:m=1.
    故答案为:1.
    【点睛】
    本题考查了二次函数图象上点的坐标特征,利用函数值相等两点关于对称轴对称得出m﹣1=1﹣(﹣1)是解题的关键.
    15、11π﹣.
    【解析】
    阴影部分的面积=扇形ECF的面积-△ACD的面积-△OCM的面积-扇形AOM的面积-弓形AN的面积.
    【详解】
    解:连接OM,ON.

    ∴OM=3,OC=6,


    ∴扇形ECF的面积
    △ACD的面积
    扇形AOM的面积
    弓形AN的面积
    △OCM的面积
    ∴阴影部分的面积=扇形ECF的面积−△ACD的面积−△OCM的面积−扇形AOM的面积−弓形AN的面积
    故答案为.
    【点睛】
    考查不规则图形的面积的计算,掌握扇形的面积公式是解题的关键.
    16、x≤1
    【解析】
    分析:分别求出不等式组中两个不等式的解集,找出解集的公共部分即可确定出不等式组的解集.
    详解: ,
    由①得:x
    由②得:.
    则不等式组的解集为:x.
    故答案为x≤1.
    点睛:本题主要考查了解一元一次不等式组.

    三、解答题(共8题,共72分)
    17、(1),;(2)4;(3).
    【解析】
    (1)连接CB,CD,依据四边形BODC是正方形,即可得到B(1,2),点C(2,2),利用待定系数法即可得到反比例函数和一次函数的解析式;
    (2)依据OB=2,点A的横坐标为-4,即可得到△AOB的面积为:2×4×=4;
    (3)依据数形结合思想,可得当x<1时,k1x+b−>1的解集为:-4<x<1.
    【详解】
    解:(1)如图,连接,,
    ∵⊙C与轴,轴相切于点D,,且半径为,
    ,,
    ∴四边形是正方形,

    ,点,
    把点代入反比例函数中,
    解得:,
    ∴反比例函数解析式为:,
    ∵点在反比例函数上,
    把代入中,可得,

    把点和分别代入一次函数中,
    得出:,
    解得:,
    ∴一次函数的表达式为:;
    (2)如图,连接,
    ,点的横坐标为,
    的面积为:;
    (3)由,根据图象可知:当时,的解集为:.

    【点睛】
    本题考查了反比例函数与一次函数的交点依据待定系数法求函数解析式,解题的关键是求出C,B点坐标.
    18、18 60分
    【解析】
    分析:(1)观察图形可知,第4天收到问卷最多,用矩形的高度比=频数之比即可得出结论;
    (2)由于组距相同,各矩形的高度比即为频数的比,可由数据总数=某组的频数÷频率计算;
    (3)根据概率公式计算即可;
    (4)分别计算第4天,第6天的获奖率后比较即可.
    详解:(1)由图可知:第4天收到问卷最多,设份数为x,则:4:6=2:x,解得:x=18;
    (2)2÷[4÷(2+3+4+6+4+1)]=60份;
    (3)抽到第4天回收问卷的概率是;
    (4)第4天收回问卷获奖率,第6天收回问卷获奖率.
    ∵,
    ∴第6天收回问卷获奖率高.
    点睛:本题考查了对频数分布直方图的掌握情况,根据图中信息,求出频率,用来估计概率.用到的知识点为:总体数目=部分数目÷相应频率.部分的具体数目=总体数目×相应频率.概率=所求情况数与总情况数之比.
    19、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.
    【解析】
    试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;
    (2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;
    (3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.
    试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,
    ∴B(3,0),C(0,3),
    把B、C坐标代入抛物线解析式可得,解得,
    ∴抛物线解析式为y=x2﹣4x+3;
    (2)∵y=x2﹣4x+3=(x﹣2)2﹣1,
    ∴抛物线对称轴为x=2,P(2,﹣1),
    设M(2,t),且C(0,3),
    ∴MC=,MP=|t+1|,PC=,
    ∵△CPM为等腰三角形,
    ∴有MC=MP、MC=PC和MP=PC三种情况,
    ①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);
    ②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);
    ③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);
    综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);
    (3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,

    设E(x,x2﹣4x+3),则F(x,﹣x+3),
    ∵0<x<3,
    ∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,
    ∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,
    ∴当x=时,△CBE的面积最大,此时E点坐标为(,),
    即当E点坐标为(,)时,△CBE的面积最大.
    考点:二次函数综合题.
    20、(1)购进猕猴桃20千克,购进芒果30千克;(2)能赚420元钱.
    【解析】
    设购进猕猴桃x千克,购进芒果y千克,由总价单价数量结合老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,即可得出关于x,y的二元一次方程组,解之即可得出结论;
    根据利润销售收入成本,即可求出结论.
    【详解】
    设购进猕猴桃x千克,购进芒果y千克,
    根据题意得:,
    解得:.
    答:购进猕猴桃20千克,购进芒果30千克.
    元.
    答:如果猕猴桃和芒果全部卖完,他能赚420元钱.
    【点睛】
    本题考查了二元一次方程组的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据数量关系,列式计算.
    21、(1)证明见解析;(2)证明见解析;(3)4.
    【解析】
    试题分析:(1)依据AE=EF,∠DEC=∠AEF=90°,即可证明△AEF是等腰直角三角形;
    (2)连接EF,DF交BC于K,先证明△EKF≌△EDA,再证明△AEF是等腰直角三角形即可得出结论;
    (3)当AD=AC=AB时,四边形ABFD是菱形,先求得EH=DH=CH=,Rt△ACH中,AH=3,即可得到AE=AH+EH=4.
    试题解析:解:(1)如图1.∵四边形ABFD是平行四边形,∴AB=DF.∵AB=AC,∴AC=DF.∵DE=EC,∴AE=EF.∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;
    (2)如图2,连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED.∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE.∵∠DKC=∠C,∴DK=DC.∵DF=AB=AC,∴KF=AD.在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.
    (3)如图3,当AD=AC=AB时,四边形ABFD是菱形,设AE交CD于H,依据AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH==3,∴AE=AH+EH=4.

    点睛:本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.
    22、(1)DE与⊙O相切,证明见解析;(2)AC=8.
    【解析】
    (1)解:(1)DE与⊙O相切.
    证明:连接OD、AD,
    ∵点D是的中点,
    ∴=,
    ∴∠DAO=∠DAC,
    ∵OA=OD,
    ∴∠DAO=∠ODA,
    ∴∠DAC=∠ODA,
    ∴OD∥AE,
    ∵DE⊥AC,
    ∴DE⊥OD,
    ∴DE与⊙O相切.
    (2) 连接BC,根据△ODF与△ABC相似,求得AC的长.AC=8
    23、(1)被随机抽取的学生共有50人;(2)活动数为3项的学生所对应的扇形圆心角为72°,(3)参与了4项或5项活动的学生共有720人.
    【解析】
    分析:(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;
    (2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;
    (3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.
    详解:(1)被随机抽取的学生共有14÷28%=50(人);
    (2)活动数为3项的学生所对应的扇形圆心角=×360°=72°,
    活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,
    如图所示:

    (3)参与了4项或5项活动的学生共有×2000=720(人).
    点睛:本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统计图得出解题所需的数据是解题的关键.
    24、(1)A(4,0),C(3,﹣3);(2) m=;(3) E点的坐标为(2,0)或(,0)或(0,﹣4);
    【解析】
    方法一:(1)m=2时,函数解析式为y=,分别令y=0,x=1,即可求得点A和点B的坐标, 进而可得到点C的坐标;
    (2) 先用m表示出P, A C三点的坐标,分别讨论∠APC=,∠ACP=,∠PAC=三种情况, 利用勾股定理即可求得m的值;
    (3) 设点F(x,y)是直线PE上任意一点,过点F作FN⊥PM于N,可得Rt△FNP∽Rt△PBC,
    NP:NF=BC:BP求得直线PE的解析式,后利用△PEC是以P为直角顶点的等腰直角三角形求得E点坐标.
    方法二:(1)同方法一.
    (2) 由△ACP为直角三角形, 由相互垂直的两直线斜率相乘为-1,可得m的值;
    (3)利用△PEC是以P为直角顶点的等腰直角三角形,分别讨论E点再x轴上,y轴上的情况求得E点坐标.
    【详解】
    方法一:
    解:
    (1)若m=2,抛物线y=x2﹣2mx=x2﹣4x,
    ∴对称轴x=2,
    令y=0,则x2﹣4x=0,
    解得x=0,x=4,
    ∴A(4,0),
    ∵P(1,﹣2),令x=1,则y=﹣3,
    ∴B(1,﹣3),
    ∴C(3,﹣3).
    (2)∵抛物线y=x2﹣2mx(m>1),
    ∴A(2m,0)对称轴x=m,
    ∵P(1,﹣m)
    把x=1代入抛物线y=x2﹣2mx,则y=1﹣2m,
    ∴B(1,1﹣2m),
    ∴C(2m﹣1,1﹣2m),
    ∵PA2=(﹣m)2+(2m﹣1)2=5m2﹣4m+1,
    PC2=(2m﹣2)2+(1﹣m)2=5m2﹣10m+5,
    AC2=1+(1﹣2m)2=2﹣4m+4m2,
    ∵△ACP为直角三角形,
    ∴当∠ACP=90°时,PA2=PC2+AC2,
    即5m2﹣4m+1=5m2﹣10m+5+2﹣4m+4m2,整理得:4m2﹣10m+6=0,
    解得:m=,m=1(舍去),
    当∠APC=90°时,PA2+PC2=AC2,
    即5m2﹣4m+1+5m2﹣10m+5=2﹣4m+4m2,整理得:6m2﹣10m+4=0,
    解得:m=,m=1,和1都不符合m>1,
    故m=.
    (3)设点F(x,y)是直线PE上任意一点,过点F作FN⊥PM于N,
    ∵∠FPN=∠PCB,∠PNF=∠CBP=90°,
    ∴Rt△FNP∽Rt△PBC,
    ∴NP:NF=BC:BP,即=,
    ∴y=2x﹣2﹣m,
    ∴直线PE的解析式为y=2x﹣2﹣m.
    令y=0,则x=1+,
    ∴E(1+m,0),
    ∴PE2=(﹣m)2+(m)2=,
    ∴=5m2﹣10m+5,解得:m=2,m=,
    ∴E(2,0)或E(,0),
    ∴在x轴上存在E点,使得△PEC是以P为直角顶点的等腰直角三角形,此时E(2,0)或E(,0);
    令x=0,则y=﹣2﹣m,
    ∴E(0,﹣2﹣m)
    ∴PE2=(﹣2)2+12=5
    ∴5m2﹣10m+5=5,解得m=2,m=0(舍去),
    ∴E(0,﹣4)
    ∴y轴上存在点E,使得△PEC是以P为直角顶点的等腰直角三角形,此时E(0,﹣4),
    ∴在坐标轴上是存在点E,使得△PEC是以P为直角顶点的等腰直角三角形,E点的坐标为(2,0)或(,0)或(0,﹣4);
    方法二:
    (1)略.
    (2)∵P(1,﹣m),
    ∴B(1,1﹣2m),
    ∵对称轴x=m,
    ∴C(2m﹣1,1﹣2m),A(2m,0),
    ∵△ACP为直角三角形,
    ∴AC⊥AP,AC⊥CP,AP⊥CP,
    ①AC⊥AP,∴KAC×KAP=﹣1,且m>1,
    ∴,m=﹣1(舍)
    ②AC⊥CP,∴KAC×KCP=﹣1,且m>1,
    ∴=﹣1,∴m=,
    ③AP⊥CP,∴KAP×KCP=﹣1,且m>1,
    ∴=﹣1,∴m=(舍)
    (3)∵P(1,﹣m),C(2m﹣1,1﹣2m),
    ∴KCP=,
    △PEC是以P为直角顶点的等腰直角三角形,
    ∴PE⊥PC,∴KPE×KCP=﹣1,∴KPE=2,
    ∵P(1,﹣m),
    ∴lPE:y=2x﹣2﹣m,
    ∵点E在坐标轴上,
    ∴①当点E在x轴上时,
    E(,0)且PE=PC,
    ∴(1﹣)2+(﹣m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,
    ∴m2=5(m﹣1)2,
    ∴m1=2,m2=,
    ∴E1(2,0),E2(,0),
    ②当点E在y轴上时,E(0,﹣2﹣m)且PE=PC,
    ∴(1﹣0)2+(﹣m+2+m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,
    ∴1=(m﹣1)2,
    ∴m1=2,m2=0(舍),
    ∴E(0,4),
    综上所述,(2,0)或(,0)或(0,﹣4).
    【点睛】
    本题主要考查二次函数的图象与性质.
    扩展:
    设坐标系中两点坐标分别为点A(), 点B(), 则线段AB的长度为:
    AB=.
    设平面内直线AB的解析式为:,直线CD的解析式为:
    (1)若AB//CD,则有:;
    (2)若AB⊥CD,则有:.

    相关试卷

    2022年江苏省南京市溧水县中考数学模拟试题含解析: 这是一份2022年江苏省南京市溧水县中考数学模拟试题含解析,共18页。试卷主要包含了计算,的值是,如图所示的正方体的展开图是等内容,欢迎下载使用。

    2022年江苏省南京市六区重点名校中考试题猜想数学试卷含解析: 这是一份2022年江苏省南京市六区重点名校中考试题猜想数学试卷含解析,共16页。试卷主要包含了下列运算正确的是,计算x﹣2y﹣等内容,欢迎下载使用。

    2022届江苏省南京市溧水县中考押题数学预测卷含解析: 这是一份2022届江苏省南京市溧水县中考押题数学预测卷含解析,共19页。试卷主要包含了一、单选题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map